Pediatric Cardiology

, Volume 39, Issue 4, pp 647–652 | Cite as

Prediction of Therapeutic Response to Cyclooxygenase Inhibitors in Preterm Infants with Patent Ductus Arteriosus

  • Yang Hu
  • Hongfang Jin
  • Yi Jiang
  • Junbao Du
Review Article


Patent ductus arteriosus (PDA) is a morbid condition commonly seen in premature infants. Cyclooxygenase (COX) inhibitors, such as indomethacin and ibuprofen, are often used for the treatment of PDA in preterm infants, and they work by reducing the production of prostaglandin. However, as observed in clinical practice, not all PDAs in preterm infants can be closed using COX inhibitors. Some studies have demonstrated that gestational age, birth weight, B-type natriuretic peptide (BNP), and ductal diameter can predict the therapeutic responsiveness to COX inhibitors. This paper reviews the factors that can predict successful closure of the PDA in preterm infants using indomethacin or ibuprofen and presents new opinions and recent findings on this topic, including the predictive roles of intrauterine growth restriction, timing of the treatment, and the importance of platelet count and arterial pH. We also discuss the prospects for future studies to improve the individualized therapy of PDA in premature neonates.


Cyclooxygenase inhibitors Patent ductus arteriosus Preterm infant Predict Response 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lemons JA, Bauer CR, Oh W et al (2001) Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107:E1CrossRefPubMedGoogle Scholar
  2. 2.
    Mirea L, Sankaran K, Seshia M et al (2012) Treatment of patent ductus arteriosus and neonatal mortality/morbidities: adjustment for treatment selection bias. J Pediatr 161:689–694. CrossRefPubMedGoogle Scholar
  3. 3.
    Neumann R, Schulzke SM, Buhrer C (2012) Oral ibuprofen versus intravenous ibuprofen or intravenous indomethacin for the treatment of patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. Neonatology 102:9–15. CrossRefPubMedGoogle Scholar
  4. 4.
    Lee J, Rajadurai VS, Tan KW, Wong KY, Wong EH, Leong JY (2003) Randomized trial of prolonged low-dose versus conventional-dose indomethacin for treating patent ductus arteriosus in very low birth weight infants. Pediatrics 112:345–350CrossRefPubMedGoogle Scholar
  5. 5.
    Lago P, Bettiol T, Salvadori S et al (2002) Safety and efficacy of ibuprofen versus indomethacin in preterm infants treated for patent ductus arteriosus: a randomised controlled trial. Eur J Pediatr 161:202–207CrossRefPubMedGoogle Scholar
  6. 6.
    Madan J, Fiascone J, Balasubramanian V, Griffith J, Hagadorn JI (2008) Predictors of ductal closure and intestinal complications in very low birth weight infants treated with indomethacin. Neonatology 94:45–51CrossRefPubMedGoogle Scholar
  7. 7.
    Chorne N, Jegatheesan P, Lin E, Shi R, Clyman RI (2007) Risk factors for persistent ductus arteriosus patency during indomethacin treatment. J Pediatr 151:629–634. CrossRefPubMedGoogle Scholar
  8. 8.
    Waleh N, Hodnick R, Jhaveri N et al (2010) Patterns of gene expression in the ductus arteriosus are related to environmental and genetic risk factors for persistent ductus patency. Pediatr Res 68:292–297. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang CZ, Lee J (2008) Factors affecting successful closure of hemodynamically significant patent ductus arteriosus with indomethacin in extremely low birth weight infants. World J Pediatr 4:91–96. CrossRefPubMedGoogle Scholar
  10. 10.
    Boo NY, Mohd-Amin I, Bilkis AA, Yong-Junina F (2006) Predictors of failed closure of patent ductus arteriosus with indomethacin. Singap Med J 47:763–768Google Scholar
  11. 11.
    Madeleneau D, Aubelle MS, Pierron C et al (2015) Efficacy of a first course of ibuprofen for patent ductus arteriosus closure in extremely preterm newborns according to their gestational age-specific Z-score for birth weight. PLoS ONE 10:e0124804CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhao J, Li M (2014) Progress in pathogenesis of patent ductus arteriosus in preterm infants. Chin J Appl Clin Pediatr 29:60–63Google Scholar
  13. 13.
    Kim ES, Kim EK, Choi CW et al (2010) Intrauterine inflammation as a risk factor for persistent ductus arteriosus patency after cyclooxygenase inhibition in extremely low birth weight infants. J Pediatr 157:745–750. CrossRefPubMedGoogle Scholar
  14. 14.
    McPherson C, Gal P, Ransom JL et al (2010) Indomethacin pharmacodynamics are altered by surfactant: a possible challenge to current indomethacin dosing guidelines created before surfactant availability. Pediatr Cardiol 31:505–510. CrossRefPubMedGoogle Scholar
  15. 15.
    Dani C, Bertini G, Corsini I et al (2008) The fate of ductus arteriosus in infants at 23–27 weeks of gestation: from spontaneous closure to ibuprofen resistance. Acta Paediatr 97:1176–1180. CrossRefPubMedGoogle Scholar
  16. 16.
    Pistulli E, Hamiti A, Buba S, Hoxha A, Kelmendi N, Vyshka G (2014) The Association between patent ductus arteriosus and perinatal infection in a group of low birth weight preterm infants. Iran J Pediatr 24:42–48PubMedGoogle Scholar
  17. 17.
    Prescott S, Keim-Malpass J (2017) Patent ductus arteriosus in the preterm infant: diagnostic and treatment options. Adv Neonatal Care 17:10–18. CrossRefPubMedGoogle Scholar
  18. 18.
    Yoo H, Lee JA, Oh S et al (2017) Comparison of the mortality and in-hospital outcomes of preterm infants treated with ibuprofen for patent ductus arteriosus with or without clinical symptoms attributable to the patent ductus arteriosus at the time of ibuprofen treatment. J Korean Med Sci 32:115–123. CrossRefPubMedGoogle Scholar
  19. 19.
    Gudmundsdottir A, Johansson S, Håkansson S, Norman M, Källen K, Bonamy AK (2014) Timing of pharmacological treatment for patent ductus arteriosus and risk of secondary surgery, death or bronchopulmonary dysplasia: a population-based cohort study of extremely preterm infants. Neonatology 107:87–92CrossRefPubMedGoogle Scholar
  20. 20.
    Hammerman C, Zaia W, Berger S, Strates E, Aldousany A (1986) Prostaglandin levels: predictors of indomethacin responsiveness. Pediatr Cardiol 7:61–65. CrossRefPubMedGoogle Scholar
  21. 21.
    Gao X, Hei M, Yang B et al (2015) The changes of plasma prostaglandins E2 before and after treatment of patent ductus arteriosus in preterm neonates. Chin J Heart Heart Rhythm 3:102–108Google Scholar
  22. 22.
    Weisz DE, McNamara PJ, El-Khuffash A (2017) Cardiac biomarkers and haemodynamically significant patent ductus arteriosus in preterm infants. Early Hum Dev 105:41–47. CrossRefPubMedGoogle Scholar
  23. 23.
    Hsu JH, Yang SN, Chen HL, Tseng HI, Dai ZK, Wu JR (2010) B-type natriuretic peptide predicts responses to indomethacin in premature neonates with patent ductus arteriosus. J Pediatr 157:79–84. CrossRefPubMedGoogle Scholar
  24. 24.
    Ramon AM, Pradel ZG, Espuelas CF, Montanes LJ, Villagrasa MPS, Gracia SR (2016) Usefulness of brain natriuretic propeptide in the diagnosis and management of patent ductus arteriosus. Ann Pediatr. Google Scholar
  25. 25.
    Occhipinti F, De Carolis MP, De RG et al (2014) Correlation analysis between echocardiographic flow pattern and N-terminal-pro-brain natriuretic peptide for early targeted treatment of patent ductus arteriosus. J Matern Fetal Neonatal Med 27:1800–1804CrossRefPubMedGoogle Scholar
  26. 26.
    Ahamed MF, Verma P, Lee S et al (2015) Predictors of successful closure of patent ductus arteriosus with indomethacin. J Perinatol 35:729–734. CrossRefPubMedGoogle Scholar
  27. 27.
    Dani C, Poggi C, Fontanelli G (2013) Relationship between platelet count and volume and spontaneous and pharmacological closure of ductus arteriosus in preterm infants. Am J Perinatol 30:359–364. PubMedGoogle Scholar
  28. 28.
    Akar S, Karadag N, Yildirim TG et al (2016) Does platelet mass influence the effectiveness of ibuprofen treatment for patent ductus arteriosus in preterm infants? J Matern Fetal Neonatal Med 29:1–18CrossRefGoogle Scholar
  29. 29.
    Steiner M, Salzer-Muhar U, Swoboda V et al (2014) Preterm infants who later require duct ligation show different vital signs and pH in early postnatal life. Acta Paediatr 104:e7–e13CrossRefPubMedGoogle Scholar
  30. 30.
    Tschuppert S, Doell C, Arlettaz-Mieth R et al (2008) The effect of ductal diameter on surgical and medical closure of patent ductus arteriosus in preterm neonates: size matters. J Thorac Cardiovasc Surg 135:78–82. CrossRefPubMedGoogle Scholar
  31. 31.
    Olsson KW, Jonzon A, Sindelar R (2012) A high ductal flow velocity is associated with successful pharmacological closure of patent ductus arteriosus in infants 22–27 weeks gestational age. Crit Care Res Pract 2012:715265. PubMedPubMedCentralGoogle Scholar
  32. 32.
    Pees C, Walch E, Obladen M, Koehne P (2010) Echocardiography predicts closure of patent ductus arteriosus in response to ibuprofen in infants less than 28 week gestational age. Early Hum Dev 86:503–508. CrossRefPubMedGoogle Scholar
  33. 33.
    Durrmeyer X, Hovhannisyan S, Medard Y et al (2010) Are cytochrome P450 CYP2C8 and CYP2C9 polymorphisms associated with ibuprofen response in very preterm infants? PLoS ONE 5:e12329. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Waleh N, Barrette AM, Dagle JM et al (2015) Effects of advancing gestation and non-Caucasian race on ductus arteriosus gene expression. J Pediatr 167:1033–1041. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Inomata K, Taniguchi S, Yonemoto H, Inoue T, Kawase A, Kondo Y (2016) Early postnatal lower oxygen saturation target and risk of ductus arteriosus closure failure. Pediatr Int 58:1153–1157CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PediatricsPeking University First HospitalBeijingChina

Personalised recommendations