Pediatric Cardiology

, Volume 39, Issue 4, pp 810–817 | Cite as

Comparative Noninvasive Measurement of Cardiac Output Based on the Inert Gas Rebreathing Method (Innocor®) and MRI in Patients with Univentricular Hearts

  • Miriam Kuhn
  • Andreas Hornung
  • Heidi Ulmer
  • Christian Schlensak
  • Michael Hofbeck
  • Gesa Wiegand
Original Article


There are many complex cardiac malformations that are characterized by a functionally univentricular physiology. Staged surgical repair according to the Fontan principle separates the systemic and pulmonary circulations by connecting the systemic venous return to the pulmonary arteries. However, long-term follow-up studies demonstrate a gradual deterioration of cardiac function, particularly from the second or third decade. Noninvasive evaluation of the cardiac function is, therefore, important in the follow-up of these patients. The cardiac index (CI) is a reliable hemodynamic parameter and represents an important marker of cardiac function. We compared CI values determined by cardiac MRI (CMRI) with values obtained by noninvasive inert gas rebreathing (IGR; Innocor® system). Sixteen patients (age range: 7.2–32.7 years) with functionally univentricular hearts (UVH) following total cavopulmonary connection (TCPC) were compared with 12 healthy subjects (age range: 8.5–18.6 years). The standard treadmill protocol of the German Society of Pediatric Cardiology was used for exercise testing. CI was determined at rest and at two standardized submaximal exercise levels. In all subjects, CI increased under exercise conditions, but the values were significantly lower in patients with UVH. There was no significant difference between patients with UVH and predominantly right- or left-ventricular morphology. In comparison with CMRI measurements, the CI values obtained by the IGR method tended to be lower, with a mean difference of 1.02 l/min/m2. Noninvasive measurement of CI with the IGR method is feasible at rest and during exercise, and appears to be suited for routine determination of CI in patients with UVH following TCPC.


Cardiac output Inert gas rebreathing method Innocor® MRI Magnetic resonance imaging Functional univentricular heart 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study protocol was approved by the local ethics committee of the University Hospital Tuebingen.


  1. 1.
    Navarro-Aguilar V, Flors L, Calvillo P, Merlos P, Buendía F, Igual B, Melero-Ferrer J, Soriano JR, Leiva-Salinas C (2015) Fontan procedure: imaging of normal post-surgical anatomy and the spectrum of cardiac and extracardiac complications. Clin Radiol 70(3):295–303. CrossRefPubMedGoogle Scholar
  2. 2.
    Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gewillig M (2005) The Fontan circulation. Heart 91(6):839–846. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaulitz R, Hofbeck M (2005) Current treatment and prognosis in children with functionally univentricular hearts. Arch Dis Child 90(7):757–762. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Robbers-Visser D, Kapusta L, van Osch-Gevers L, Strengers JLM, Boersma E, de Rijke YB, Boomsma F, Bogers AJJC, Helbing WA (2009) Clinical outcome 5 to 18 years after the Fontan operation performed on children younger than 5 years. J Thorac Cardiovasc Surg 138(1):89–95. CrossRefPubMedGoogle Scholar
  6. 6.
    Fontana P, Boutellier U, Toigo M (2010) Non-invasive haemodynamic assessments using Innocor during standard graded exercise tests. Eur J Appl Physiol 108(3):573–580. CrossRefPubMedGoogle Scholar
  7. 7.
    Trinkmann F, Berger M, Doesch C, Sampels M, Papavassiliu T, Grüttner J, Borggrefe M, Kaden JJ, Saur J (2012) Überblick der nicht-invasiven Bestimmung des Herzzeitvolumens—Vergleich neuer Methoden mit dem Goldstandard kardiale Magnetresonanztomografie. Fortschr Röntgenstr 184(02):TNE09. CrossRefGoogle Scholar
  8. 8.
    Pennell D (2001) Imaging techniques: cardiovascular magnetic resonance. Heart 85:581–589CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Saur J, Fluechter S, Trinkmann F, Papavassiliu T, Schoenberg S, Weissmann J, Haghi D, Borggrefe M, Kaden JJ (2009) Noninvasive determination of cardiac output by the inert-gas-rebreathing method–comparison with cardiovascular magnetic resonance imaging. Cardiology 114(4):247–254. CrossRefPubMedGoogle Scholar
  10. 10.
    Agostoni P, Cattadori G (2009) Noninvasive cardiac output measurement: a new tool in heart failure. Cardiology 114(4):244–246. CrossRefPubMedGoogle Scholar
  11. 11.
    Agostoni P, Cattadori G, Apostolo A, Contini M, Palermo P, Marenzi G, Wasserman K (2005) Noninvasive measurement of cardiac output during exercise by inert gas rebreathing technique: a new tool for heart failure evaluation. J Am Coll Cardiol 46(9):1779–1781. CrossRefPubMedGoogle Scholar
  12. 12.
    Dong L, Wang JA, Jiang CY (2005) Validation of the use of foreign gas rebreathing method for non-invasive determination of cardiac output in heart disease patients. J Zhejiang Univ Sci B 6(12):1157–1162. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fontana P, Boutellier U, Toigo M (2009) Reliability of measurements with Innocor during exercise. Int J Sports Med 30(10):747–753. CrossRefPubMedGoogle Scholar
  14. 14.
    Gabrielsen A, Videbaek R, Schou M, Damgaard M, Kastrup J, Norsk P (2002) Non-invasive measurement of cardiac output in heart failure patients using a new foreign gas rebreathing technique. Clin Sci (Lond) 102(2):247–252CrossRefGoogle Scholar
  15. 15.
    Peyton PJ, Thompson B (2004) Agreement of an inert gas rebreathing device with thermodilution and the direct oxygen Fick method in measurement of pulmonary blood flow. J Clin Monit Comput 18(5–6):373–378CrossRefPubMedGoogle Scholar
  16. 16.
    Hauser J, Michel-Behnke I, Zervan K, Pees C (2011) Noninvasive measurement of atrial contribution to the cardiac output in children and adolescents with congenital complete atrioventricular block treated with dual-chamber pacemakers. Am J Cardiol 107(1):92–95. CrossRefPubMedGoogle Scholar
  17. 17.
    Wiegand G, Binder W, Ulmer H, Kaulitz R, Riethmueller J, Hofbeck M (2012) Noninvasive cardiac output measurement at rest and during exercise in pediatric patients after interventional or surgical atrial septal defect closure. Pediatr Cardiol 33(7):1109–1114. CrossRefPubMedGoogle Scholar
  18. 18.
    Wiegand G, Kerst G, Baden W, Hofbeck M (2010) Noninvasive cardiac output determination for children by the inert gas-rebreathing method. Pediatr Cardiol 31(8):1214–1218. CrossRefPubMedGoogle Scholar
  19. 19.
    Dubowy KO, Baden W, Bernitzki S, Peters B (2008) A practical and transferable new protocol for treadmill testing of children and adults. Cardiol Young 18(6):615–623. CrossRefPubMedGoogle Scholar
  20. 20.
    Lang CC, Karlin P, Haythe J, Tsao L, Mancini DM (2007) Ease of noninvasive measurement of cardiac output coupled with peak VO2 determination at rest and during exercise in patients with heart failure. Am J Cardiol 99(3):404–405. CrossRefPubMedGoogle Scholar
  21. 21.
    Hager A, Hess J (2005) Comparison of health related quality of life with cardiopulmonary exercise testing in adolescents and adults with congenital heart disease. Heart 91(4):517–520. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ovroutski S, Nordmeyer S, Miera O, Ewert P, Klimes K, Kuhne T, Berger F (2012) Caval flow reflects Fontan hemodynamics: quantification by magnetic resonance imaging. Clin Res Cardiol 101(2):133–138. CrossRefPubMedGoogle Scholar
  23. 23.
    Bossers SSM, Kapusta L, Kuipers IM, van Iperen G, Moelker A, Kroft LJM, Romeih S, de Rijke Y, ten Harkel ADJ, Helbing WA (2015) Ventricular function and cardiac reserve in contemporary Fontan patients. Int J Cardiol 196(0):73–80. CrossRefPubMedGoogle Scholar
  24. 24.
    Whitehead KK, Gillespie MJ, Harris MA, Fogel MA, Rome JJ (2009) Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imag 2(5):405–411. CrossRefGoogle Scholar
  25. 25.
    Bossers SS, Cibis M, Gijsen FJ, Schokking M, Strengers JL, Verhaart RF, Moelker A, Wentzel JJ, Helbing WA (2014) Computational fluid dynamics in Fontan patients to evaluate power loss during simulated exercise. Heart 100(9):696–701. CrossRefPubMedGoogle Scholar
  26. 26.
    Ohuchi H, Hiraumi Y, Tasato H, Kuwahara A, Chado H, Toyohara K, Arakaki Y, Yagihara T, Kamiya T (1999) Comparison of the right and left ventricle as a systemic ventricle during exercise in patients with congenital heart disease. Am Heart J 137(6):1185–1194CrossRefPubMedGoogle Scholar
  27. 27.
    Ohuchi H, Yasuda K, Hasegawa S, Miyazaki A, Takamuro M, Yamada O, Ono Y, Uemura H, Yagihara T, Echigo S (2001) Influence of ventricular morphology on aerobic exercise capacity in patients after the Fontan operation. J Am Coll Cardiol 37(7):1967–1974. CrossRefPubMedGoogle Scholar
  28. 28.
    Giardini A, Hager A, Pace Napoleone C, Picchio FM (2008) Natural history of exercise capacity after the Fontan operation: a longitudinal study. Ann Thorac Surg 85(3):818–821. CrossRefPubMedGoogle Scholar
  29. 29.
    Saur J, Trinkmann F, Doesch C, Scherhag A, Brade J, Schoenberg SO, Borggrefe M, Kaden JJ, Papavassiliu T (2010) The impact of pulmonary disease on noninvasive measurement of cardiac output by the inert gas rebreathing method. Lung 188(5):433–440. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Miriam Kuhn
    • 1
  • Andreas Hornung
    • 1
  • Heidi Ulmer
    • 1
  • Christian Schlensak
    • 2
  • Michael Hofbeck
    • 1
  • Gesa Wiegand
    • 1
  1. 1.Department of Pediatric CardiologyUniversity Children’s HospitalTuebingenGermany
  2. 2.Department of Thoracic and Cardiovascular SurgeryUniversity Hospital TuebingenTuebingenGermany

Personalised recommendations