Advertisement

Pediatric Cardiology

, Volume 39, Issue 4, pp 805–809 | Cite as

The Ratio Fallacy, with Special Reference to the Cardiac Index

  • Julien I. E. Hoffman
Original Article
  • 111 Downloads

Abstract

When comparing cardiac outputs in children of different sizes, or deciding on the normality of these outputs, we often convert the absolute output to the output per m2 body surface area—the cardiac index. For small infants, this leads to potentially large errors. The best way to evaluate these outputs is to determine their z values.

Keywords

Cardiac output Body surface area Cardiac index 

Notes

Acknowledgements

I would like to thank Dr. David Teitel for his many helpful comments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Henry WL, Ware J, Gardin JM, Hepner SI, McKay J, Weiner M (1978) Echocardiographic measurements in normal subjects. Growth-related changes that occur between infancy and early adulthood. Circulation 57:278–285CrossRefPubMedGoogle Scholar
  2. 2.
    Rogé CL, Silverman NH, Hart PA, Ray RM (1978) Cardiac structure growth pattern determined by echocardiography. Circulation 57:285–290CrossRefPubMedGoogle Scholar
  3. 3.
    Dallaire F, Bigras JL, Prsa M, Dahdah N (2015) Bias related to body mass index in pediatric echocardiographic Z scores. Pediatr Cardiol 36:667–676CrossRefPubMedGoogle Scholar
  4. 4.
    Dallaire F, Bigras JL, Prsa M, Dahdah N (2015) Erratum to: Bias related to body mass index in pediatric echocardiographic Z scores. Pediatr Cardiol 36:1316CrossRefPubMedGoogle Scholar
  5. 5.
    Redlarski G, Palkowski A, Krawczuk M (2016) Body surface area formulae: an alarming ambiguity. Sci Rep 6:27966CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    du Bois D, du Bois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Int Med 17:863–871CrossRefGoogle Scholar
  7. 7.
    Sluysmans T, Colan SD (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99:445–457CrossRefPubMedGoogle Scholar
  8. 8.
    Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93:62–66CrossRefPubMedGoogle Scholar
  9. 9.
    Tanner JM (1949) Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol 2:1–15CrossRefPubMedGoogle Scholar
  10. 10.
    Tanner JM (1949) The construction of normal standards for cardiac output in man. J Clin Invest 28:567–582CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Reeves JT, Grover RF, Filley GF, Blount SG Jr (1961) Cardiac output in normal resting man. J Appl Physiol 16:276–278CrossRefPubMedGoogle Scholar
  12. 12.
    Sproul A, Simpson E (1964) Stroke volume and related hemodynamic data in normal children. Pediatrics 33:912–918PubMedGoogle Scholar
  13. 13.
    Cayler GG, Rudolph AM, Nadas AS (1963) Systemic blood flow in infants and children with and without heart disease. Pediatrics 32:186–201PubMedGoogle Scholar
  14. 14.
    Jegier W, Sekelj P, Auld PA, Simpson R, McGregor M (1963) The relation between cardiac output and body size. Br Heart J 25:425–430CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Carlsson M, Andersson R, Bloch KM, Steding-Ehrenborg K, Mosen H, Stahlberg F, Ekmehag B, Arheden H (2012) Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson 14:51CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de Simone G, Devereux RB, Daniels SR, Mureddu G, Roman MJ, Kimball TR, Greco R, Witt S, Contaldo F (1997) Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 95:1837–1843CrossRefPubMedGoogle Scholar
  17. 17.
    Alverson DC, Eldridge M, Dillon T, Yabek SM, Berman W Jr (1982) Noninvasive pulsed Doppler determination of cardiac output in neonates and children. J Pediatr 101:46–50CrossRefPubMedGoogle Scholar
  18. 18.
    Emmanouilides GC, Moss AJ, Monset-Couchard M, Marcano BA, Rzeznic B (1970) Cardiac output in newborn infants. Biol Neonate 15:186–197CrossRefPubMedGoogle Scholar
  19. 19.
    Mellander M, Sabel KG, Caidahl K, Solymar L, Eriksson B (1987) Doppler determination of cardiac output in infants and children: comparison with simultaneous thermodilution. Pediatr Cardiol 8:241–246CrossRefPubMedGoogle Scholar
  20. 20.
    Walther FJ, Siassi B, Ramadan NA, Ananda AK, Wu PY (1985) Pulsed Doppler determinations of cardiac output in neonates: normal standards for clinical use. Pediatrics 76:829–833PubMedGoogle Scholar
  21. 21.
    Delanaye P, Mariat C, Cavalier E, Krzesinski JM (2009) Errors induced by indexing glomerular filtration rate for body surface area: reductio ad absurdum. Nephrol Dial Transplant 24:3593–3596CrossRefPubMedGoogle Scholar
  22. 22.
    Piepsz A, Tondeur M, Ham H (2008) Escaping the correction for body surface area when calculating glomerular filtration rate in children. Eur J Nucl Med Mol Imaging 35:1669–1672CrossRefPubMedGoogle Scholar
  23. 23.
    Krovetz LJ, McLoughlin TG, Mitchell MB, Schiebler GL (1967) Hemodynamic findings in normal children. Pediatr Res 1:122–130CrossRefPubMedGoogle Scholar
  24. 24.
    Skimming JW, Cassin S, Nichols WW (1997) Calculating vascular resistances. Clin Cardiol 20:805–808CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations