Skip to main content

Advertisement

Log in

Worsening in Longitudinal Strain and Strain Rate Anticipates Development of Pediatric Transplant Coronary Artery Vasculopathy as Soon as One Year Following Transplant

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Transplant coronary artery vasculopathy (TCAV) following orthotopic heart transplantation (OHT) continues to be the primary reason for late graft failure in children. The current gold standard of diagnosis of TCAV is coronary angiography with or without intravascular ultrasound. This study investigates the longitudinal use of speckle-tracking echocardiographic strain imaging as an early non-invasive marker to screen for development of TCAV. Echocardiograms from patients who underwent OHT between 2006 and 2010 at Children’s Hospital Colorado (n = 50) were retrospectively assessed. Studies were evaluated at baseline (within a month of transplant), then at each annual clinical follow-up for peak longitudinal (LS) and circumferential (CS) strain, systolic strain rate, and diastolic strain rate using Siemens Velocity Vector Imaging software. Comparisons were made between subjects who did and did not develop TCAV. Mean time to TCAV diagnosis following OHT was 3.2 years (range 1–5.1 years). One year after transplant, significant differences were seen between groups in LS (non-TCAV mean −19.6%, TCAV mean −17.3%, p = 0.03) and longitudinal strain rate (non-TCAV mean −1.7%/s, TCAV mean −1.4%/s, p = 0.04). These differences persisted in subsequent years. Differences in LS preceded the catheterization-based diagnosis of TCAV in pediatric heart recipients and were noted as early as one year post transplant. Additionally, within-subject LS changes may have utility as a non-invasive screening tool to predict those patients at increased risk for development of TCAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TCAV:

Transplant coronary artery vasculopathy

OHT:

Orthotopic heart transplant

IVUS:

Intravascular ultrasound

LS:

Longitudinal strain

CS:

Circumferential strain

References

  1. Aranda JM Jr, Hill J (2000) Cardiac transplant vasculopathy. Chest 118(6):1792–1800

    Article  PubMed  Google Scholar 

  2. Zuppan CW, Wells LM, Kerstetter JC, Johnston JK, Bailey LL, Chinnock RE (2009) Cause of death in pediatric and infant heart transplant recipients: review of a 20-year, single-institution cohort. J Heart Lung Transplant 28(6):579–584. https://doi.org/10.1016/j.healun.2009.02.012

    Article  PubMed  Google Scholar 

  3. Boucek MM, Mathis CM, Kanakriyeh MS, Hodgkin DD, Boucek RJ Jr, Bailey LL (1993) Serial echocardiographic evaluation of cardiac graft rejection after infant heart transplantation. J Heart Lung Transplant 12(5):824–831

    CAS  PubMed  Google Scholar 

  4. Kato TS, Homma S, Mancini D (2013) Novel echocardiographic strategies for rejection diagnosis. Curr Opin Organ Transplant. https://doi.org/10.1097/MOT.0b013e328364fc8f

    PubMed  Google Scholar 

  5. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R (2009) Strain and strain rate imaging by echocardiography: basic concepts and clinical applicability. Curr Cardiol Rev 5(2):133–148. https://doi.org/10.2174/157340309788166642

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bertini M, Ng AC, Antoni ML, Nucifora G, Ewe SH, Auger D, Marsan NA, Schalij MJ, Bax JJ, Delgado V (2012) Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imaging 5(3):383–391. https://doi.org/10.1161/CIRCIMAGING.111.970434

    Article  PubMed  Google Scholar 

  7. Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, Solomon SD, VALIANT Investigators (2010) Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol 56(22):1812–1822. https://doi.org/10.1016/j.jacc.2010.06.044

    Article  PubMed  Google Scholar 

  8. Zhang KW, French B, May Khan A, Plappert T, Fang JC, Sweitzer NK, Borlaug BA, Chirinos JA, St John Sutton M, Cappola TP, Ky B (2014) Strain improves risk prediction beyond ejection fraction in chronic systolic heart failure. J Am Heart Assoc 3(1):e000550. https://doi.org/10.1161/JAHA.113.000550

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sera F, Kato TS, Farr M, Russo C, Jin Z, Marboe CC, Di Tullio MR, Mancini D, Homma S (2014) Left ventricular longitudinal strain by speckle-tracking echocardiography is associated with treatment-requiring cardiac allograft rejection. J Card Fail 20(5):359–364. https://doi.org/10.1016/j.cardfail.2014.02.006

    Article  PubMed  Google Scholar 

  10. Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH (2015) Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: relation to coronary allograft vasculopathy. J Heart Lung Transplant 34(2):195–203. https://doi.org/10.1016/j.healun.2014.07.008

    Article  PubMed  Google Scholar 

  11. Zoeller BB, Miyamoto SD, Younoszai AK, Landeck BF 2nd (2016) Longitudinal strain and strain rate abnormalities precede invasive diagnosis of transplant coronary artery vasculopathy in pediatric cardiac transplant patients. Pediatr Cardiol 37(4):656–662. https://doi.org/10.1007/s00246-015-1328-9

    Article  PubMed  Google Scholar 

  12. Cai Q, Rangasetty UC, Barbagelata A, Fujise K, Koerner MM (2011) Cardiac allograft vasculopathy: advances in diagnosis. Cardiol Rev 19(1):30–35. https://doi.org/10.1097/CRD.0b013e3181fbde2f

    Article  PubMed  Google Scholar 

  13. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, Pignatelli RH, Rychik J, Task Force of the Pediatric Council of the American Society of E, Pediatric Council of the American Society of E (2006) Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr 19(12):1413–1430. https://doi.org/10.1016/j.echo.2006.09.001

    Article  PubMed  Google Scholar 

  14. Chin C, Naftel D, Pahl E, Shankel T, Clark ML, Gamberg P, Kirklin J, Webber S, Pediatric Heart Transplant S (2006) Cardiac re-transplantation in pediatrics: a multi-institutional study. J Heart Lung Transplant 25(12):1420–1424. https://doi.org/10.1016/j.healun.2006.09.020

    Article  PubMed  Google Scholar 

  15. Carasso S, Biaggi P, Rakowski H, Mutlak D, Lessick J, Aronson D, Woo A, Agmon Y (2012) Velocity vector imaging: standard tissue-tracking results acquired in normals: the VVI-STRAIN study. J Am Soc Echocardiogr 25(5):543–552. https://doi.org/10.1016/j.echo.2012.01.005

    Article  PubMed  Google Scholar 

  16. Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98(5):699–704. https://doi.org/10.1016/j.amjcard.2006.03.056

    Article  PubMed  Google Scholar 

  17. Vannan MA, Pedrizzetti G, Li P, Gurudevan S, Houle H, Main J, Jackson J, Nanda NC (2005) Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images. Echocardiography 22(10):826–830. https://doi.org/10.1111/j.1540-8175.2005.00172.x

    Article  PubMed  Google Scholar 

  18. Angtuaco MJ, Vyas HV, Malik S, Holleman BN, Gossett JM, Sachdeva R (2012) Early detection of cardiac dysfunction by strain and strain rate imaging in children and young adults with Marfan syndrome. J Ultrasound Med 31(10):1609–1616

    Article  PubMed  Google Scholar 

  19. Iacoviello M, Puzzovivo A, Guida P, Forleo C, Monitillo F, Catanzaro R, Lattarulo MS, Antoncecchi V, Favale S (2013) Independent role of left ventricular global longitudinal strain in predicting prognosis of chronic heart failure patients. Echocardiography 30(7):803–811. https://doi.org/10.1111/echo.12142

    Article  PubMed  Google Scholar 

  20. Haugaa KH, Grenne BL, Eek CH, Ersboll M, Valeur N, Svendsen JH, Florian A, Sjoli B, Brunvand H, Kober L, Voigt JU, Desmet W, Smiseth OA, Edvardsen T (2013) Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 6(8):841–850. https://doi.org/10.1016/j.jcmg.2013.03.005

    Article  PubMed  Google Scholar 

  21. Kailin JA, Miyamoto SD, Younoszai AK, Landeck BF (2012) Longitudinal myocardial deformation is selectively decreased after pediatric cardiac transplantation: a comparison of children 1 year after transplantation with normal subjects using velocity vector imaging. Pediatr Cardiol 33(5):749–756. https://doi.org/10.1007/s00246-012-0205-z

    Article  PubMed  Google Scholar 

  22. Sarvari SI, Gjesdal O, Gude E, Arora S, Andreassen AK, Gullestad L, Geiran O, Edvardsen T (2012) Early postoperative left ventricular function by echocardiographic strain is a predictor of 1-year mortality in heart transplant recipients. J Am Soc Echocardiogr 25(9):1007–1014. https://doi.org/10.1016/j.echo.2012.05.010

    Article  PubMed  Google Scholar 

  23. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45(3):248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spotnitz HM (2000) Macro design, structure, and mechanics of the left ventricle. J Thorac Cardiovasc Surg 119(5):1053–1077

    Article  CAS  PubMed  Google Scholar 

  25. Maiers J, Hurwitz R (2008) Identification of coronary artery disease in the pediatric cardiac transplant patient. Pediatr Cardiol 29(1):19–23. https://doi.org/10.1007/s00246-007-9038-6

    Article  PubMed  Google Scholar 

  26. Stoica SC, Cafferty F, Pauriah M, Taylor CJ, Sharples LD, Wallwork J, Large SR, Parameshwar J (2006) The cumulative effect of acute rejection on development of cardiac allograft vasculopathy. J Heart Lung Transplant 25(4):420–425. https://doi.org/10.1016/j.healun.2005.11.449

    Article  PubMed  Google Scholar 

  27. Raichlin E, Edwards BS, Kremers WK, Clavell AL, Rodeheffer RJ, Frantz RP, Pereira NL, Daly RC, McGregor CG, Lerman A, Kushwaha SS (2009) Acute cellular rejection and the subsequent development of allograft vasculopathy after cardiac transplantation. J Heart Lung Transplant 28(4):320–327. https://doi.org/10.1016/j.healun.2009.01.006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Boruta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruta, R.J., Miyamoto, S.D., Younoszai, A.K. et al. Worsening in Longitudinal Strain and Strain Rate Anticipates Development of Pediatric Transplant Coronary Artery Vasculopathy as Soon as One Year Following Transplant. Pediatr Cardiol 39, 129–139 (2018). https://doi.org/10.1007/s00246-017-1737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1737-z

Keywords

Navigation