Skip to main content
Log in

Electrocardiographic Markers of Appropriate Implantable Cardioverter-Defibrillator Therapy in Young People with Congenital Heart Diseases

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Implantable cardioverter-defibrillators (ICDs) are increasingly utilized in patients with congenital heart disease (CHD). Prediction of the occurrence of shocks is important if improved patient selection is desired. The electrocardiogram (ECG) has been the first-line tool predicting the risk of sudden death, but data in CHD patients are lacking. We aim to evaluate the predictive value of electrocardiographic markers of appropriate therapy of ICD in young people with CHD. We conducted a prospective, longitudinal study, in twenty-six CHD patients (mean age 24.7 ± 5.3 years) who underwent first ICD implantation. Forty-two age- and diagnosis-matched controls were recruited. Twelve-lead ECG and 24 h Holter analysis were performed during a mean follow-up of 38.9 months. Data included heart rate, heart rate variability, QRS duration (QRSd), QTc interval and its dispersion, Tpeak–Tend (Tp–Te) interval and its dispersion, presence of fragmented QRS (fQRS), T wave alternans, atrial arrhythmias, and non-sustained ventricular tachycardia. Implant indication was primary prevention in ten cases (38.5%) and secondary prevention in 16 (61.5%). Overall, 17 subjects (65.3%) received at least one appropriate and effective ICD discharge. fQRS was present in 64.7% of cases with ICD therapy compared with patients without events or controls (p < 0.0001). Tp–e and Tp–e dispersion were significantly prolonged in patients with recurrences (113.5 and 37.2 ms) versus patients without ICD discharge (89.6 and 24.1 ms) or controls (72.4 and 19.3 ms) (p < 0.0001 and p < 0.0001, respectively). On univariate Cox regression analysis QRSd (hazard ratio: 1.19 per ms, p = 0.003), QTc dispersion (hazard ratio: 1.57 per ms, p = 0.002), fQRS (hazard ratio: 3.58 p < 0.0001), Tp–e (hazard ratio: 2.27 per ms, p < 0.0001), and Tp–e dispersion (hazard ratio: 4.15 per ms, p < 0.0001), emerged as strong predictors of outcome. On multivariate Cox analysis fQRS, Tp–e and Tp–e dispersion remained in the model. The presence of fQRS, and both Tp–e and Tp–e dispersion are useful ECG tools in daily clinical practice to identify CHD patients at risk for appropriate ICD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Silka MJ, Hardy BG, Menashe VD, Morris CD (1998) A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol 32:245-251.congenital heart defects. J Am Coll Cardiol 32:245–251

    Article  CAS  PubMed  Google Scholar 

  2. Nieminen HP, Jokinen EV (2007) Sairanen HI (2007) Causes of late deaths after pediatric cardiac surgery: a population-based study. J Am Coll Cardiol 50:1263–1271

    Article  PubMed  Google Scholar 

  3. Koyak Z, Harris L, de Groot JR et al (2012) Sudden cardiac death in adult congenital heart disease. Circulation 126:1944–1954

    Article  PubMed  Google Scholar 

  4. Khairy P, Harris L, Landzberg MJ et al (2008) Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation 117:363–370

    Article  PubMed  Google Scholar 

  5. Khairy P, Harris L, Landzberg MJ et al (2008) Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter study. Circ Arrhythm Electrophysiol 1:250–257

    Article  PubMed  Google Scholar 

  6. Koyak Z, de Groot JR, Van Gelder IC et al (2012) Implantable cardioverter defibrillator therapy in adults with congenital heart disease: who is at risk of shocks? Circ Arrhythm Electrophysiol 5:101–110

    Article  PubMed  Google Scholar 

  7. De Maso DR, Lauretti A, Spieth L et al (2004) Psychosocial factors and quality of life in children and adolescents with implantable cardioverter-defibrillators. Am J Cardiol 93:582–587

    Article  Google Scholar 

  8. Czosek RJ, Bonney WJ, Cassedy A et al (2012) Impact of cardiac devices on the quality of life in pediatric patients. Circ Arrhythm Electrophysiol 5:1064–1072

    Article  PubMed  Google Scholar 

  9. Gatzoulis MA, Till JA, Redington AN (1997) Depolarization-repolarization inhomogeneity after repair of tetralogy of Fallot. Circulation 95:401–404

    Article  CAS  PubMed  Google Scholar 

  10. Daliento L, Caneve F, Turrini P et al (1995) Clinical significance of high-frequency, low-amplitude electrocardiographic signals and QT dispersion in patients operated on for tetralogy of Fallot. Am J Cardiol 76:408–411

    Article  CAS  PubMed  Google Scholar 

  11. Daliento L, Rizzoli G, Menti L et al (1999) Accuracy of electrocardiographic and echocardiographic indices in predicting life threatening ventricular arrhythmias in patients operated for tetralogy of Fallot. Heart 81:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun ZH, Happonen JM, Bennhagen R et al (2004) Increased QT dispersion and loss of sinus rhythm as risk factors for late sudden death after Mustard or Senning procedures for transposition of the great arteries. Am J Cardiol 94:138–141

    Article  PubMed  Google Scholar 

  13. Bokma JP, Winter MM, Vehmeijer JT et al (2016) QRS fragmentation is superior to QRS duration in predicting mortality in adults with tetralogy of Fallot. Heart. doi:10.1136/heartjnl-2016-310068

    Google Scholar 

  14. Zipes DP, Camm AJ, Borggrefe M et al (2006) ACC/AHA/ESC guidelines for management of patients with ventricular arrhythmias and the prevention of sudden death. J Am Coll Cardiol 48:247–346

    Article  Google Scholar 

  15. Epstein AE, Di Marco JP, Ellenbogen KA (2013) 2012 ACCF/AHA/HRS focus update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. J Am Coll Cardiol 61:6–75

    Article  Google Scholar 

  16. Khairy P, Van Hare GF, Balaji S (2014) PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease. Heart Rhythm 11:102–165

    Article  Google Scholar 

  17. Aykan HH, Karagoz T, Gulgun M et al (2016) Midterm results of implantable cardioverter defibrillators in children and young adults from a single center in Turkey. PACE 39:1225–1239

    Article  PubMed  Google Scholar 

  18. Berul CI, Van Hare GF, Kertesz NJ et al (2012) Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol 51:1685–1691

    Article  Google Scholar 

  19. Von Berge NH, Atkins DL, Dick M II et al (2011) Multicenter study of the effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr Cardiol 32:399–405

    Article  Google Scholar 

  20. Kamp AN, Von Bergen NH, Henrikson CA et al (2013) Implanted defibrillators in young hypertrophic cardiomyopathy patients: a multicenter study. Pediatr Cardiol 34:1620–1627

    Article  PubMed  Google Scholar 

  21. Zhang L, Mmagu O, Liu L et al (2014) Hypertrophic cardiomyopathy: can the noninvasive diagnostic testing identify high risk patients? World J Cardiol 6:764–770

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peters S, Trümmel M, Koehler B (2008) QRS fragmentation in standard ECG as a diagnostic marker of arrhythmogenic right ventricular dysplasia cardiomyopathy. Heart Rhythm 5:1417–1421

    Article  PubMed  Google Scholar 

  23. Das MK, Michael MA, Suradi H et al (2009) Usefulness of fragmented QRS on a 12-lead electrocardiogram in acute coronary syndrome for predicting mortality. Am J Cardiol 104:1631–1637

    Article  PubMed  Google Scholar 

  24. Ning XH, Tang M, Chen KP et al (2012) The prognostic significance of fragmented QRS in patients with left ventricular noncompaction cardiomyopathy. Can J Cardiol 28:508–514

    Article  PubMed  Google Scholar 

  25. Park SJ, On YK, Kim JS et al (2012) Relation of fragmented QRS complex to right ventricular fibrosis detected by late gadolinium enhancement cardiac magnetic resonance in adults with repaired tetralogy of Fallot. Am J Cardiol 109:110–115

    Article  PubMed  Google Scholar 

  26. Egidy Assenza G, Valente AM, Geva T et al (2013) QRS duration and QRS fractionation on surface electrocardiogram are markers of right ventricular dysfunction and atrialization in patients with Ebstein anomaly. Eur Heart J 34:191–200

    Article  CAS  PubMed  Google Scholar 

  27. Apiyasawat S, Sahasthas D, Ngarmukos T et al (2014) Fragmented QRS as a predictor of appropriate implantable cardioverter-defibrillator therapy. Indian Pacing Electrophysiol J 14:4–11

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park SJ, Chung S, On YK et al (2013) Fragmented QRS complex in adult patients with Ebstein anomaly and its association with arrhythmic risk and the severity of the anomaly. Cir Arrhythm Electrophysiol 6:1148–1155

    Article  Google Scholar 

  29. Vogels RJ, Teuwen CP, Ramdjan TTTK et al (2017) Usefulness of fragmented QRS complexes in patients with congenital heart disease to predict ventricular tachyarrythmias. Am J Cardiol 119:126–131

    Article  PubMed  Google Scholar 

  30. Topilski I, Rogowski O, Rosso R et al (2007) The morphology of the QT interval predicts torsade de pointes during acquired bradyarrhythmias. J Am Coll Cardiol 49:320–328

    Article  PubMed  Google Scholar 

  31. Graff C, Andersen MP, Xue JQ et al (2009) Identifying drug-induced repolarization abnormalities from distinct ECG patterns in congenital long QT syndrome: a study of sotalol effects on T-wave morphology. Drug Saf 32:599–611

    Article  CAS  PubMed  Google Scholar 

  32. Shah RR (2005) Drug-induced QT dispersion: does it predict the risk of torsade de pointes? J Electrocardiol 38:10–18

    Article  PubMed  Google Scholar 

  33. Sarubbi B, Pacileo G, Ducceschi V et al (1999) Arrhythmogenic substrate in young patients with repaired tetralogy of Fallot: role of an abnormal ventricular repolarization. Int J Cardiol 72:73–82

    Article  CAS  PubMed  Google Scholar 

  34. Özkan S, Akay T, Gültekin B et al (2005) Ventricular arrhythmia and tetralogy of Fallot repair with transannular patch. Anadolu Kardiyol Derg 5:297–301

    PubMed  Google Scholar 

  35. Berul CI, Hill SL, Geggel RL et al (1997) Electrocardiographic markers of late sudden death risk in postoperative tetralogy of Fallot children. J Cardiovasc Electrophysiol 8:1349–1356

    Article  CAS  PubMed  Google Scholar 

  36. Huh J, Noh CI, Choi JY et al (2001) Sustained ventricular tachycardia in children after repair of congenital heart disease. J Korean Med Sci 16:25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ibanez A, Ferrero JM (2006) The ECG T-wave duration as an index of dispersion of ventricular repolarization: insights from simulations. Comput Cardiol 33:793–796

    Google Scholar 

  38. Yan GX, Antzelevitch C (1998) Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation 98:1928–1936

    Article  CAS  PubMed  Google Scholar 

  39. Xia Y, Liang Y, Kongstad O et al (2005) In vivo validation of the coincidence of the peak and end of the T wave with full repolarization of the epicardium and endocardium in swine. Heart Rhythm 2:162–169

    Article  PubMed  Google Scholar 

  40. Xia Y, Liang Y, Kongstad O (2005) Tpeak-Tend as an index of global dispersion of ventricular repolarization: evaluations using monophasic action potential mapping of the epi- and endocardium in swine. J Interv Card Electrophysiol 14:79–87

    Article  PubMed  Google Scholar 

  41. Shimizu M, Ino H, Okeie K et al (2002) T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol 25:335–339

    Article  PubMed  Google Scholar 

  42. Hevia JC, Antzelevitch C, Barzaga FT et al (2006) Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol 47:1828–1834

    Article  PubMed Central  Google Scholar 

  43. Morin DP, Saad MN, Shams OF et al (2011) Relationships between the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic dysfunction. Europace 14:1172–1279

    Article  Google Scholar 

  44. Lellouche N, De Diego C, Akopyan G et al (2007) Changes and predictive value of dispersion of repolarization parameters for appropriate therapy in patients with biventricular implantable cardioverter-defibrillators. Heart Rhythm 4:1274–1283

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunia Bárbara Benítez Ramos.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical Approval

All procedures performed in the study were in accordance with the ethical standards of the institutional research committee, ethical commitee, and with the 1964 Helsinki declaration.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez Ramos, D.B., Cabrera Ortega, M., Castro Hevia, J. et al. Electrocardiographic Markers of Appropriate Implantable Cardioverter-Defibrillator Therapy in Young People with Congenital Heart Diseases. Pediatr Cardiol 38, 1663–1671 (2017). https://doi.org/10.1007/s00246-017-1711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1711-9

Keywords

Navigation