Pediatric Cardiology

, Volume 38, Issue 7, pp 1485–1492 | Cite as

Elevated Myocardial Extracellular Volume Fraction in Duchenne Muscular Dystrophy

  • James J. Starc
  • Ryan A. Moore
  • Mantosh S. Rattan
  • Chet R. Villa
  • Zhiqian Gao
  • Wojciech Mazur
  • John L. Jefferies
  • Michael D. Taylor
Original Article


Duchenne muscular dystrophy (DMD) is a genetic, X-linked recessive disease with an associated cardiomyopathy characterized by myocardial fibrosis leading to heart failure, arrhythmias, and death. Earlier detection and treatment of cardiac involvement in DMD hold potential to improve outcomes. Cardiovascular magnetic resonance (CMR) extracellular volume (ECV) quantification using T1 mapping is a histologically validated, non-invasive marker of diffuse fibrosis. This study aims to determine the ECV in a pediatric DMD population, and correlate it with metrics of left ventricular function. A retrospective review of pediatric DMD subjects who underwent CMR at a single institution. A total of 47 DMD patients (mean age 14 ± 2 years) were included for analysis. Global myocardial ECV was significantly higher in the DMD group (29 ± 6%) compared with published normal values (24 ± 2%, p = 0.0001). Higher ECV values correlate with indices of left ventricular function, including decreased left ventricular ejection fraction (r = −0.46, p = 0.001) and indexed left ventricular end diastolic volume (r = 0.41, p = 0.004). ECV was not significantly higher in DMD patients with late gadolinium enhancement (LGE) (30 ± 7%) compared to DMD patients without LGE (27 ± 5%, p = 0.0717). CMR T1 mapping is a feasible method for quantification of ECV in patients with DMD. Global myocardial ECV is significantly higher in the DMD population compared to healthy controls and correlates with other metrics of myocardial function. Global myocardial ECV may serve as an important tool to determine cardiac involvement in DMD population and help guide medical management.


Magnetic resonance imaging Duchenne muscular dystrophy cardiomyopathy Myocardial fibrosis Heart failure Late gadolinium enhancement 


Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Research Involving Human and Animal Rights

This article does not contain any studies with animals performed by any of the authors.


  1. 1.
    Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740CrossRefPubMedGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention (2009) Prevalence of duchenne/becker muscular dystrophy among males aged 5–24 years—four states, 2007. Morb Mortal Wkly Rep 58(40):1119–1122Google Scholar
  3. 3.
    Fischmann A, Hafner P, Gloor M, Schmid M, Klein A, Pohlman U, Waltz T, Gonzalez R, Haas T, Bieri O, Fischer D (2013) Quantitative MRI and loss of free ambulation in duchenne muscular dystrophy. J Neurol 260(4):969–974. doi: 10.1007/s00415-012-6733-x CrossRefPubMedGoogle Scholar
  4. 4.
    Vuillerot C, Girardot F, Payan C, Fermanian J, Iwaz J, De Lattre C, Berard C (2010) Monitoring changes and predicting loss of ambulation in duchenne muscular dystrophy with the motor function measure. Dev Med Child Neurol 52(1):60–65. doi: 10.1111/j.1469-8749.2009.03316.x CrossRefPubMedGoogle Scholar
  5. 5.
    Bach JR, Martinez D (2011) Duchenne muscular dystrophy: continuous noninvasive ventilatory support prolongs survival. Respir Care 56(6):744–750. doi: 10.4187/respcare.00831 CrossRefPubMedGoogle Scholar
  6. 6.
    Connuck DM, Sleeper LA, Colan SD, Cox GF, Towbin JA, Lowe AM, Wilkinson JD, Orav EJ, Cuniberti L, Salbert BA, Lipshultz SE, Pediatric Cardiomyopathy Registry Study Group (2008) Characteristics and outcomes of cardiomyopathy in children with duchenne or becker muscular dystrophy: a comparative study from the pediatric cardiomyopathy registry. Am Heart J 155(6):998–1005. doi: 10.1016/j.ahj.2008.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K (2002) Survival in duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord 12(10):926–929CrossRefPubMedGoogle Scholar
  8. 8.
    Passamano L, Taglia A, Palladino A, Viggiano E, D’Ambrosio P, Scutifero M, Rosaria Cecio M, Torre V, De Luca F, Picillo E, Paciello O, Piluso G, Nigro G, Politano L (2012) Improvement of survival in duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol 31(2):121–125PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schram G, Fournier A, Leduc H, Dahdah N, Therien J, Vanasse M, Khairy P (2013) All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in duchenne muscular dystrophy. J Am Coll Cardiol 61(9):948–954. doi: 10.1016/j.jacc.2012.12.008 CrossRefPubMedGoogle Scholar
  10. 10.
    Finsterer J, Stollberger C (2003) The heart in human dystrophinopathies. Cardiology 99(1):1–19CrossRefPubMedGoogle Scholar
  11. 11.
    Frankel KA, Rosser RJ (1976) The pathology of the heart in progressive muscular dystrophy: epimyocardial fibrosis. Hum Pathol 7(4):375–386CrossRefPubMedGoogle Scholar
  12. 12.
    Moriuchi T, Kagawa N, Mukoyama M, Hizawa K (1993) Autopsy analyses of the muscular dystrophies. Tokushima J Exp Med 40(1–2):83–93PubMedGoogle Scholar
  13. 13.
    Florian A, Ludwig A, Rosch S, Yildiz H, Sechtem U, Yilmaz A (2014) Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 15(9):1004–1012. doi: 10.1093/ehjci/jeu050 CrossRefPubMedGoogle Scholar
  14. 14.
    Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57(8):891–903. doi: 10.1016/j.jacc.2010.11.013 CrossRefPubMedGoogle Scholar
  15. 15.
    Hor KN, Taylor MD, Al-Khalidi HR, Cripe LH, Raman SV, Jefferies JL, O’Donnell R, Benson DW, Mazur W (2013) Prevalence and distribution of late gadolinium enhancement in a large population of patients with duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magnet Reson 15:107. doi: 10.1186/1532-429X-15-107 CrossRefGoogle Scholar
  16. 16.
    Tandon A, Villa CR, Hor KN, Jefferies JL, Gao Z, Towbin JA, Wong BL, Mazur W, Fleck RJ, Sticka JJ, Benson DW, Taylor MD (2015) Myocardial fibrosis burden predicts left ventricular ejection fraction and is associated with age and steroid treatment duration in duchenne muscular dystrophy. J Am Heart Assoc. doi: 10.1161/JAHA.114.001338 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, Plein S, Yu CY, Otton J, Kidambi A, McDiarmid A, Broadbent D, Higgins DM, Schnackenburg B, Foote L, Cummins C, Nagel E, Puntmann VO (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magnet Reson 16:69. doi: 10.1186/s12968-014-0069-x CrossRefGoogle Scholar
  18. 18.
    Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, Greiser A, Parker GJ, Schmitt M (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6(3):373–383. doi: 10.1161/CIRCIMAGING.112.000192 CrossRefPubMedGoogle Scholar
  19. 19.
    Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, Mudd JO, van der Geest RJ, Lima JA, Halushka MK, Bluemke DA (2012) T1 mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology 265(3):724–732. doi: 10.1148/radiol.12112721 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Moon JC, Messroghli, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB, Society for Cardiovascular Magnetic Resonance Imaging, Cardiovascular Magnetic Resonance Working Group of the European Society of Cardiology (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magnet Reson 15:92. doi: 10.1186/1532-429X-15-92 CrossRefGoogle Scholar
  21. 21.
    Soslow JH, Damon BM, Saville BR, Lu Z, Burnette WB, Lawson MA, Parra DA, Sawyer DB, Markham LW (2015) Evaluation of post-contrast myocardial t1 in duchenne muscular dystrophy using cardiac magnetic resonance imaging. Pediatr Cardiol 36(1):49–56. doi: 10.1007/s00246-014-0963-x CrossRefPubMedGoogle Scholar
  22. 22.
    Dusenbery SM, Jerosch-Herold M, Rickers C, Colan SD, Geva T, Newburger JW, Powell AJ (2014) Myocardial extracellular remodeling is associated with ventricular diastolic dysfunction in children and young adults with congenital aortic stenosis. J Am Coll Cardiol 63(17):1778–1785. doi: 10.1016/j.jacc.2013.11.066 CrossRefPubMedGoogle Scholar
  23. 23.
    Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M (2010) Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 3(6):727–734. doi: 10.1161/CIRCIMAGING.108.842096 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani, American Heart Association Writing Group on Myocardial Segmentation, Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542CrossRefPubMedGoogle Scholar
  25. 25.
    Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33(10):1268–1278. doi: 10.1093/eurheartj/ehr481 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of Pediatric CardiologyMount Sinai Medical CenterNew YorkUSA
  2. 2.The Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.The Heart and Vascular Center at the Christ HospitalCincinnatiUSA

Personalised recommendations