Pediatric Cardiology

, Volume 38, Issue 7, pp 1385–1392 | Cite as

Risk Factors for Peri-Procedural Arterial Ischaemic Stroke in Children with Cardiac Disease

  • Hiroko Asakai
  • Belinda Stojanovski
  • John C. Galati
  • Dianna Zannino
  • Michael Cardamone
  • Darren Hutchinson
  • Michael M. H. Cheung
  • Mark T. Mackay
Original Article


Improved survival of children with congenital heart disease has led to increasing focus on neurodevelopmental outcome, as close to half of the infants undergoing cardiac surgery are affected by neurodevelopmental disability. Stroke is particularly important as it frequently results in permanent neurologic sequelae. The aim of this study was to investigate risk factors for peri-procedural arterial ischaemic stroke (AIS) in children with cardiac disease. A retrospective case–control analysis of children aged <18 years with radiologically confirmed AIS following a cardiac procedure admitted to the Royal Children’s Hospital Melbourne between 1993 and 2010. Each case was matched with two controls with similar cardiac diagnosis, procedure type, age and date of procedure. Demographics and peri-procedural data were collected from medical records and departmental database. Fifty-two cases were identified. Multivariable analysis identified post-procedural infection (OR 6.1, CI 1.3–27, p = 0.017) and length of ICU stay (OR 4.0, CI 1.4–11, p = 0.009) as risk factors for AIS. Although the study is limited to a single-centre cohort, length of ICU stay and post-procedural infection were identified as risk factors for AIS. These findings demonstrate these factors to be important areas to focus attention for stroke prevention in children with cardiac disease.


Stroke Congenitall heart disease Perioperative Risk factors 



All phases of this study were supported by the Brain Foundation Australia. Dr.Asakai is also supported by Nissan Australia. Dr.Cardamone is also supported by Uncle Bob’s Neurology fellowship. The Heart Research Group is supported by RCH 1000, RCH Foundation and Big W. The MCRI is supported by the Victorian Government’s Operational Infrastructure Support Program.


This study was supported by the Brain Foundation Australia.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

246_2017_1674_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 109 kb)


  1. 1.
    Bellinger DC, Jonas RA, Rappaport LA et al (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555CrossRefPubMedGoogle Scholar
  2. 2.
    Snookes SH, Gunn JK, Eldridge BJ et al (2010) A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 125:e818–e827. doi: 10.1542/peds.2009-1959 CrossRefPubMedGoogle Scholar
  3. 3.
    Fox CK, Fullerton HJ (2010) Recent advances in childhood arterial ischemic stroke. Curr Atheroscler Rep 12:217–224. doi: 10.1007/s11883-010-0113-8 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cnossen MH, Aarsen FK, Van Den Akker SL et al (2010) Paediatric arterial ischaemic stroke: functional outcome and risk factors. Dev Med Child Neurol 52:394–399. doi: 10.1111/j.1469-8749.2009.03580.x CrossRefPubMedGoogle Scholar
  5. 5.
    Roach GW, Kanchuger MS, Mangano CM, Mangano DT (1996) Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med 335:1857–1863CrossRefPubMedGoogle Scholar
  6. 6.
    Wolman RL, Nussmeier NA, Aggarwal A et al (1999) Cerebral injury after cardiac surgery: identification of a group at extraordinary risk. Stroke 30:514–522. doi: 10.1161/01.STR.30.3.514 CrossRefPubMedGoogle Scholar
  7. 7.
    Ziesmann MT, Nash M, Booth FA, Rafay MF (2014) Cardioembolic stroke in children: a clinical presentation and outcome study. Pediatr Neurol 51:494–502. doi: 10.1016/j.pediatrneurol.2014.06.013 CrossRefPubMedGoogle Scholar
  8. 8.
    Asakai H, Cardamone M, Hutchinson D et al (2015) Arterial ischemic stroke in children with cardiac disease. Neurology 85:2053–2059. doi: 10.1212/WNL.0000000000002036 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nalysnyk L, Fahrbach K, Reynolds MW et al (2003) Adverse events in coronary artery bypass graft (CABG) trials: a systematic review and analysis. Heart 89:767–772CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marang-van de Mheen PJ, van Duijn-Bakker N, Kievit J (2008) Surgical adverse outcomes and patients’ evaluation of quality of care: inherent risk or reduced quality of care? Postgrad Med J 84:93–98. doi: 10.1136/qshc.2006.021071 CrossRefPubMedGoogle Scholar
  11. 11.
    Hervey-Jumper SL, Annich GM, Yancon AR et al (2011) Neurological complications of extracorporeal membrane oxygenation in children. J Neurosurg 7:338–344. doi: 10.3171/2011.1.PEDS10443 Google Scholar
  12. 12.
    Barrett CS, Bratton SL, Salvin JW et al (2009) Neurological injury after extracorporeal membrane oxygenation use to aid pediatric cardiopulmonary resuscitation. Pediatr Crit Care Med 10:445–451CrossRefPubMedGoogle Scholar
  13. 13.
    Cengiz P, Seidel K, Rycus PT et al (2005) Central nervous system complications during pediatric extracorporeal life support: incidence and risk factors*. Crit Care Med 33:2817–2824CrossRefPubMedGoogle Scholar
  14. 14.
    Mackay MT, Wiznitzer M, Benedict SL et al (2011) Arterial ischemic stroke risk factors: the international pediatric stroke study. Ann Neurol 69:130–140. doi: 10.1002/ana.22224 CrossRefPubMedGoogle Scholar
  15. 15.
    Fox CK, Johnston SC, Sidney S, Fullerton HJ (2012) High critical care usage due to pediatric stroke. Neurology 79:420–427CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Amlie-Lefond C, Bernard TJ, Sebire G et al (2009) Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the international pediatric stroke study. Circulation 119:1417–1423. doi: 10.1161/CIRCULATIONAHA.108.806307 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodan L, McCrindle BW, Manlhiot C et al (2012) Stroke recurrence in children with congenital heart disease. Ann Neurol 72:103–111. doi: 10.1002/ana.23574 CrossRefPubMedGoogle Scholar
  18. 18.
    Charakida M, Donald AE, Terese M et al (2005) Endothelial dysfunction in childhood infection. Circulation 111:1660–1665. doi: 10.1161/01.CIR.0000160365.18879.1C CrossRefPubMedGoogle Scholar
  19. 19.
    Chen J, Zimmerman RA, Jarvik GP et al (2009) Perioperative stroke in infants undergoing open heart operations for congenital heart disease. Ann Thorac Surg 88:823–829. doi: 10.1016/j.athoracsur.2009.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Domi T, Edgell DS, McCrindle BW et al (2008) Frequency, predictors, and neurologic outcomes of vaso-occlusive strokes associated with cardiac surgery in children. Pediatrics 122:1292–1298. doi: 10.1542/peds.2007-1459 CrossRefPubMedGoogle Scholar
  21. 21.
    Galli KK, Zimmerman RA, Jarvik GP et al (2004) Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 127:692–704. doi: 10.1016/j.jtcvs.2003.09.053 CrossRefPubMedGoogle Scholar
  22. 22.
    Beca J, Gunn JK, Coleman L et al (2013) New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 127:971–979. doi: 10.1161/CIRCULATIONAHA.112.001089 CrossRefPubMedGoogle Scholar
  23. 23.
    McQuillen PS (2006) Balloon atrial septostomy is associated with preoperative stroke in neonates with transposition of the great arteries. Circulation 113:280–285. doi: 10.1161/CIRCULATIONAHA.105.566752 CrossRefPubMedGoogle Scholar
  24. 24.
    Beca J, Gunn J, Coleman L et al (2009) Pre-operative brain injury in newborn infantswith transposition of the great arteries occursat rates similar to other complex congenital heart disease and is not related to balloon atrial septostomy. JAC 53:1807–1811. doi: 10.1016/j.jacc.2009.01.061 Google Scholar
  25. 25.
    McQuillen PS, Barkovich AJ, Hamrick SEG et al (2007) Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 38:736–741. doi: 10.1161/01.STR.0000247941.41234.90 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Hiroko Asakai
    • 6
  • Belinda Stojanovski
    • 2
    • 7
  • John C. Galati
    • 3
    • 4
  • Dianna Zannino
    • 3
  • Michael Cardamone
    • 5
  • Darren Hutchinson
    • 1
    • 7
  • Michael M. H. Cheung
    • 1
    • 7
  • Mark T. Mackay
    • 2
    • 7
  1. 1.Department of Cardiology, Royal Children’s Hospital, Heart Research GroupMurdoch Children’s Research InstituteParkvilleAustralia
  2. 2.Department of Neurology, Royal Children’s HospitalMurdoch Children’s Research InstituteParkvilleAustralia
  3. 3.The Clinical Epidemiology and Biostatistics UnitMurdoch Children’s Research InstituteMelbourneAustralia
  4. 4.Department of Mathematics and StatisticsLa Trobe UniversityMelbourneAustralia
  5. 5.Department of NeurologySydney Children’s HospitalRandwickAustralia
  6. 6.Department of PediatricsUniversity of Tokyo HospitalTokyoJapan
  7. 7.Department of PaediatricsUniversity of MelbourneParkvilleAustralia

Personalised recommendations