Skip to main content
Log in

The Evolution of a Pediatric Ventricular Assist Device Program: The Boston Children’s Hospital Experience

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Mechanical circulatory support in the form of ventricular assist devices (VADs) in children has undergone rapid growth in the last decade. With expansion of device options available for larger children and adolescents, the field of outpatient VAD support has flourished, with many programs unprepared for the clinical, programmatic, and administrative responsibilities. From preimplantation VAD evaluation and patient education to postimplant VAD management, the VAD program, staffed with an interdisciplinary team, is essential to providing safe, effective, and sustainable care for a new technology in an exceedingly complex patient population. Herein, this paper describes the Boston Children’s Hospital VAD experience over a decade and important lessons learned from developing a pediatric program focusing on a high-risk but low-volume population. We highlight the paramount role of the VAD coordinator, clinical infrastructure requirements, as well as innovation in care spanning inpatient and outpatient VAD supports at Boston Children’s Hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vanderpluym CJ, Fynn-Thompson F, Blume ED (2014) Ventricular assist devices in children: progress with an orphan device application. Circulation 129:1530–1537. doi:10.1161/CIRCULATIONAHA.113.005574

    Article  PubMed  Google Scholar 

  2. Blume ED, Rosenthal DN, Rossano JW et al (2016) Outcomes of children implanted with ventricular assist devices in the United States: first analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Hear Lung Transplant. doi:10.1016/j.healun.2016.01.1227

    Google Scholar 

  3. VanderPluym CJ, Blume ED (2016) The role of continuous flow ventricular assist device for destination therapy in children: can it work or is it a bridge too far? Prog Pediatr Cardiol 40:25–27. doi:10.1016/j.ppedcard.2016.01.008

    Article  Google Scholar 

  4. Kirklin JK, Naftel DC, Pagani FD et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Hear Lung Transplant 34:1495–1504. doi:10.1016/j.healun.2015.10.003

    Article  Google Scholar 

  5. Kirklin JK, Naftel DC, Stevenson LW et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Hear Lung Transplant 27:1065–1072. doi:10.1016/j.healun.2008.07.021

    Article  Google Scholar 

  6. Kirklin JK (2008) Mechanical circulatory support as a bridge to pediatric cardiac transplantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. doi:10.1053/j.pcsu.2008.01.006

    PubMed  Google Scholar 

  7. Thiagarajan RR (2016) Extracorporeal membrane oxygenation for cardiac indications in children. Pediatr Crit Care Med 17:S155–S159. doi:10.1097/PCC.0000000000000753

    Article  PubMed  Google Scholar 

  8. Fraser CD, Jaquiss RDB, Rosenthal DN et al (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367:532–541. doi:10.1056/NEJMoa1014164

    Article  CAS  PubMed  Google Scholar 

  9. Bryant R, Steiner M, St Louis JD (2010) Current use of the EXCOR pediatric ventricular assist device. J Cardiovasc Transl Res 3:612–617. doi:10.1007/s12265-010-9218-2

    Article  PubMed  Google Scholar 

  10. Rockett SR, Bryant JC, Morrow WR et al (2008) Preliminary single center North American experience with the Berlin Heart pediatric EXCOR device. ASAIO J 54:479–482. doi:10.1097/MAT.0b013e318184e200

    Article  PubMed  Google Scholar 

  11. Almond CS, Morales DL, Blackstone EH et al (2013) Berlin heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation 127:1702–1711. doi:10.1161/CIRCULATIONAHA.112.000685

    Article  CAS  PubMed  Google Scholar 

  12. Hollander SA, Hollander AJ, Rizzuto S et al (2014) An inpatient rehabilitation program utilizing standardized care pathways after paracorporeal ventricular assist device placement in children. J Hear Lung Transplant 33:587–592. doi:10.1016/j.healun.2013.12.009

    Article  Google Scholar 

  13. Cabrera AG, Sundareswaran KS, Samayoa AX et al (2013) Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. J Heart Lung Transplant 32:1107–1113. doi:10.1016/j.healun.2013.07.012

    Article  PubMed  Google Scholar 

  14. Adachi I, Burki S, Zafar F, Morales DL (2015) Pediatric ventricular assist devices. J Thorac Dis 7:2194–2202. doi:10.3978/j.issn.2072-1439.2015.12.61

    PubMed  PubMed Central  Google Scholar 

  15. Chen S, Lin A, Liu E et al (2015) Discharge outcomes in children supported with continuous flow left ventricular assist devices. J Hear Lung Transplant 34:S324

    Article  Google Scholar 

  16. Miera O, Kirk R, Buchholz H et al (2016) A multicenter study of the HeartWare ventricular assist device in small children. J Hear Lung Transplant. doi:10.1016/j.healun.2016.01.019

    Google Scholar 

  17. Miera O, Potapov EV, Redlin M et al (2011) First experiences with the heartware ventricular assist system in children. Ann Thorac Surg 91:1256–1260. doi:10.1016/j.athoracsur.2010.12.013

    Article  PubMed  Google Scholar 

  18. Padalino MA, Bottio T, Tarzia V et al (2014) HeartWare ventricular assist device as bridge to transplant in children and adolescents. Artif Organs 38:418–422. doi:10.1111/aor.12185

    Article  PubMed  Google Scholar 

  19. Balciotlu O, Erkul S, Ayik F et al (2012) First successful experience with the heartware assist device in child in Turkey. Cardiovasc Ther 30:29. doi:10.1111/1755-5922.12011_1

    Google Scholar 

  20. Sparks J, Epstein D, Baltagi S et al (2015) Continuous flow device support in children using the HeartWare HVAD: 1000 days of lessons learned from a single center experience. ASAIO J 61:569–573. doi:10.1097/mat.0000000000000253

    Article  PubMed  Google Scholar 

  21. Conway J, Vanderpluym C, Jeewa A et al (2016) Now how do we get them home? Outpatient care of pediatric patients on mechanical circulatory support. Pediatr Transplant 20:194–202. doi:10.1111/petr.12674

    Article  PubMed  Google Scholar 

  22. Rossano JW, Lorts A, VanderPluym CJ et al (2016) Outcomes of pediatric patients supported with continuous-flow ventricular assist devices: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Hear Lung Transplant. doi:10.1016/j.healun.2016.01.1228

    Google Scholar 

  23. Byrnes JW, Prodhan P, Williams BA et al (2013) Incremental reduction in the incidence of stroke in children supported with the Berlin EXCOR ventricular assist device. Ann Thorac Surg 96:1727–1733. doi:10.1016/j.athoracsur.2013.06.012

    Article  PubMed  Google Scholar 

  24. Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Hear Lung Transplant 33:555–564. doi:10.1016/j.healun.2014.04.010

    Article  Google Scholar 

  25. Long JW, Kfoury AG, Slaughter MS et al (2005) Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail 11:133–138

    Article  PubMed  Google Scholar 

  26. Rose EA, Moskowitz AJ, Packer M et al (1999) The REMATCH trial: rationale, design, and end points. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure. Ann Thorac Surg 67:723–730

    Article  CAS  PubMed  Google Scholar 

  27. Rogers JG, Pagani FD, Tatooles AJ et al (2017) Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376:451–460. doi:10.1056/NEJMoa1602954

    Article  PubMed  Google Scholar 

  28. Murray JM, Hellinger A, Dionne R et al (2015) Utility of a dedicated pediatric cardiac anticoagulation program: the Boston Children’s Hospital experience. Pediatr Cardiol 36:842–850. doi:10.1007/s00246-014-1089-x

    Article  PubMed  Google Scholar 

  29. Ozbaran M, Yagdi T, Engin C et al (2015) New era of pediatric ventricular assist devices: let us go to school. Pediatr Transplant 19:82–86. doi:10.1111/petr.12399

    Article  PubMed  Google Scholar 

Download references

Funding

This paper was supported in part by the Alexia Clinton Fund and the Cardiac Transplant Research and Education Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Hawkins.

Ethics declarations

Conflict of interest

Dr Francis Fynn-Thompson acts as a proctor/consultant for HeartWare Inc. None of the other authors have any financial or otherwise conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawkins, B., Fynn-Thompson, F., Daly, K.P. et al. The Evolution of a Pediatric Ventricular Assist Device Program: The Boston Children’s Hospital Experience. Pediatr Cardiol 38, 1032–1041 (2017). https://doi.org/10.1007/s00246-017-1615-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-017-1615-8

Keywords

Navigation