Pediatric Cardiology

, Volume 38, Issue 5, pp 1032–1041 | Cite as

The Evolution of a Pediatric Ventricular Assist Device Program: The Boston Children’s Hospital Experience

  • Beth Hawkins
  • Francis Fynn-Thompson
  • Kevin P. Daly
  • Michelle Corf
  • Elizabeth Blume
  • Jean Connor
  • Courtney Porter
  • Christopher Almond
  • Christina VanderPluym
Original Article


Mechanical circulatory support in the form of ventricular assist devices (VADs) in children has undergone rapid growth in the last decade. With expansion of device options available for larger children and adolescents, the field of outpatient VAD support has flourished, with many programs unprepared for the clinical, programmatic, and administrative responsibilities. From preimplantation VAD evaluation and patient education to postimplant VAD management, the VAD program, staffed with an interdisciplinary team, is essential to providing safe, effective, and sustainable care for a new technology in an exceedingly complex patient population. Herein, this paper describes the Boston Children’s Hospital VAD experience over a decade and important lessons learned from developing a pediatric program focusing on a high-risk but low-volume population. We highlight the paramount role of the VAD coordinator, clinical infrastructure requirements, as well as innovation in care spanning inpatient and outpatient VAD supports at Boston Children’s Hospital.


Pediatric VAD Ventricular assist device VAD coordinator Outpatient VAD program Pediatric VAD program 



This paper was supported in part by the Alexia Clinton Fund and the Cardiac Transplant Research and Education Fund.

Compliance with Ethical Standards

Conflict of interest

Dr Francis Fynn-Thompson acts as a proctor/consultant for HeartWare Inc. None of the other authors have any financial or otherwise conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Vanderpluym CJ, Fynn-Thompson F, Blume ED (2014) Ventricular assist devices in children: progress with an orphan device application. Circulation 129:1530–1537. doi: 10.1161/CIRCULATIONAHA.113.005574 CrossRefPubMedGoogle Scholar
  2. 2.
    Blume ED, Rosenthal DN, Rossano JW et al (2016) Outcomes of children implanted with ventricular assist devices in the United States: first analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Hear Lung Transplant. doi: 10.1016/j.healun.2016.01.1227 Google Scholar
  3. 3.
    VanderPluym CJ, Blume ED (2016) The role of continuous flow ventricular assist device for destination therapy in children: can it work or is it a bridge too far? Prog Pediatr Cardiol 40:25–27. doi: 10.1016/j.ppedcard.2016.01.008 CrossRefGoogle Scholar
  4. 4.
    Kirklin JK, Naftel DC, Pagani FD et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Hear Lung Transplant 34:1495–1504. doi: 10.1016/j.healun.2015.10.003 CrossRefGoogle Scholar
  5. 5.
    Kirklin JK, Naftel DC, Stevenson LW et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Hear Lung Transplant 27:1065–1072. doi: 10.1016/j.healun.2008.07.021 CrossRefGoogle Scholar
  6. 6.
    Kirklin JK (2008) Mechanical circulatory support as a bridge to pediatric cardiac transplantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. doi: 10.1053/j.pcsu.2008.01.006 PubMedGoogle Scholar
  7. 7.
    Thiagarajan RR (2016) Extracorporeal membrane oxygenation for cardiac indications in children. Pediatr Crit Care Med 17:S155–S159. doi: 10.1097/PCC.0000000000000753 CrossRefPubMedGoogle Scholar
  8. 8.
    Fraser CD, Jaquiss RDB, Rosenthal DN et al (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367:532–541. doi: 10.1056/NEJMoa1014164 CrossRefPubMedGoogle Scholar
  9. 9.
    Bryant R, Steiner M, St Louis JD (2010) Current use of the EXCOR pediatric ventricular assist device. J Cardiovasc Transl Res 3:612–617. doi: 10.1007/s12265-010-9218-2 CrossRefPubMedGoogle Scholar
  10. 10.
    Rockett SR, Bryant JC, Morrow WR et al (2008) Preliminary single center North American experience with the Berlin Heart pediatric EXCOR device. ASAIO J 54:479–482. doi: 10.1097/MAT.0b013e318184e200 CrossRefPubMedGoogle Scholar
  11. 11.
    Almond CS, Morales DL, Blackstone EH et al (2013) Berlin heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation 127:1702–1711. doi: 10.1161/CIRCULATIONAHA.112.000685 CrossRefPubMedGoogle Scholar
  12. 12.
    Hollander SA, Hollander AJ, Rizzuto S et al (2014) An inpatient rehabilitation program utilizing standardized care pathways after paracorporeal ventricular assist device placement in children. J Hear Lung Transplant 33:587–592. doi: 10.1016/j.healun.2013.12.009 CrossRefGoogle Scholar
  13. 13.
    Cabrera AG, Sundareswaran KS, Samayoa AX et al (2013) Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. J Heart Lung Transplant 32:1107–1113. doi: 10.1016/j.healun.2013.07.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Adachi I, Burki S, Zafar F, Morales DL (2015) Pediatric ventricular assist devices. J Thorac Dis 7:2194–2202. doi: 10.3978/j.issn.2072-1439.2015.12.61 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen S, Lin A, Liu E et al (2015) Discharge outcomes in children supported with continuous flow left ventricular assist devices. J Hear Lung Transplant 34:S324CrossRefGoogle Scholar
  16. 16.
    Miera O, Kirk R, Buchholz H et al (2016) A multicenter study of the HeartWare ventricular assist device in small children. J Hear Lung Transplant. doi: 10.1016/j.healun.2016.01.019 Google Scholar
  17. 17.
    Miera O, Potapov EV, Redlin M et al (2011) First experiences with the heartware ventricular assist system in children. Ann Thorac Surg 91:1256–1260. doi: 10.1016/j.athoracsur.2010.12.013 CrossRefPubMedGoogle Scholar
  18. 18.
    Padalino MA, Bottio T, Tarzia V et al (2014) HeartWare ventricular assist device as bridge to transplant in children and adolescents. Artif Organs 38:418–422. doi: 10.1111/aor.12185 CrossRefPubMedGoogle Scholar
  19. 19.
    Balciotlu O, Erkul S, Ayik F et al (2012) First successful experience with the heartware assist device in child in Turkey. Cardiovasc Ther 30:29. doi: 10.1111/1755-5922.12011_1 Google Scholar
  20. 20.
    Sparks J, Epstein D, Baltagi S et al (2015) Continuous flow device support in children using the HeartWare HVAD: 1000 days of lessons learned from a single center experience. ASAIO J 61:569–573. doi: 10.1097/mat.0000000000000253 CrossRefPubMedGoogle Scholar
  21. 21.
    Conway J, Vanderpluym C, Jeewa A et al (2016) Now how do we get them home? Outpatient care of pediatric patients on mechanical circulatory support. Pediatr Transplant 20:194–202. doi: 10.1111/petr.12674 CrossRefPubMedGoogle Scholar
  22. 22.
    Rossano JW, Lorts A, VanderPluym CJ et al (2016) Outcomes of pediatric patients supported with continuous-flow ventricular assist devices: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Hear Lung Transplant. doi: 10.1016/j.healun.2016.01.1228 Google Scholar
  23. 23.
    Byrnes JW, Prodhan P, Williams BA et al (2013) Incremental reduction in the incidence of stroke in children supported with the Berlin EXCOR ventricular assist device. Ann Thorac Surg 96:1727–1733. doi: 10.1016/j.athoracsur.2013.06.012 CrossRefPubMedGoogle Scholar
  24. 24.
    Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Hear Lung Transplant 33:555–564. doi: 10.1016/j.healun.2014.04.010 CrossRefGoogle Scholar
  25. 25.
    Long JW, Kfoury AG, Slaughter MS et al (2005) Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail 11:133–138CrossRefPubMedGoogle Scholar
  26. 26.
    Rose EA, Moskowitz AJ, Packer M et al (1999) The REMATCH trial: rationale, design, and end points. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure. Ann Thorac Surg 67:723–730CrossRefPubMedGoogle Scholar
  27. 27.
    Rogers JG, Pagani FD, Tatooles AJ et al (2017) Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376:451–460. doi: 10.1056/NEJMoa1602954 CrossRefPubMedGoogle Scholar
  28. 28.
    Murray JM, Hellinger A, Dionne R et al (2015) Utility of a dedicated pediatric cardiac anticoagulation program: the Boston Children’s Hospital experience. Pediatr Cardiol 36:842–850. doi: 10.1007/s00246-014-1089-x CrossRefPubMedGoogle Scholar
  29. 29.
    Ozbaran M, Yagdi T, Engin C et al (2015) New era of pediatric ventricular assist devices: let us go to school. Pediatr Transplant 19:82–86. doi: 10.1111/petr.12399 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Beth Hawkins
    • 1
  • Francis Fynn-Thompson
    • 2
  • Kevin P. Daly
    • 1
    • 4
  • Michelle Corf
    • 3
  • Elizabeth Blume
    • 1
    • 4
  • Jean Connor
    • 1
  • Courtney Porter
    • 1
  • Christopher Almond
    • 5
  • Christina VanderPluym
    • 1
    • 4
  1. 1.Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of Cardiovascular SurgeryBoston Children’s HospitalBostonUSA
  3. 3.Department of MedicineBoston Children’s HospitalBostonUSA
  4. 4.Department of PediatricsHarvard Medical SchoolBostonUSA
  5. 5.Department of CardiologyLucile Packard HospitalStanfordUSA

Personalised recommendations