Pediatric Cardiology

, Volume 38, Issue 5, pp 991–1003 | Cite as

MicroRNAs Association in the Cardiac Hypertrophy Secondary to Complex Congenital Heart Disease in Children

  • Ma. C. Sánchez-Gómez
  • K. A. García-Mejía
  • M. Pérez-Díaz Conti
  • G. Díaz-Rosas
  • I. Palma-Lara
  • R. Sánchez-Urbina
  • M. Klünder-Klünder
  • J. A. Botello-Flores
  • N. A. Balderrábano- Saucedo
  • A. Contreras-Ramos
Original Article


Complex congenital heart disease (CHD) affects cardiac blood flow, generating a pressure overload in the compromised ventricles and provoking hypertrophy that over time will induce myocardial dysfunction and cause a potential risk of imminent death. Therefore, the early diagnosis of complex CHD is paramount during the first year of life, with surgical treatment of patients favoring survival. In the present study, we analyzed cardiac tissue and plasma of children with cardiac hypertrophy (CH) secondary to CHD for the expression of 11 miRNAs specific to CH in adults. The results were compared with the miRNA expression patterns in tissue and blood of healthy children. In this way, we determined that miRNAs 1, 18b, 21, 23b, 133a, 195, and 208b constitute the expression profile of the cardiac tissue of children with CHD. Meanwhile, miRNAs 21, 23a, 23b, and 24 can be considered specific biomarkers for the diagnosis of CH in infants with CHD. These results suggest that CH secondary to CHD in children differs in its mechanism from that described for adult hypertrophy, offering a new perspective to study the development of this pathology and to determine the potential of hypertrophic miRNAs to be biomarkers for early CH.


MicroRNAs Complex congenital heart Cardiac hypertrophy Children 



This work was supported by Children’s Hospital of Mexico Federico Gómez as part pf HIM/2012/016 SSA 1025 federal grant. Sánchez-Gómez M. C. From Health Science program, Instituto Politécnico Nacional was supported by CoNaCyT MSc (426432) Grant. We thank Lucía Lima from Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children’s Hospital of Mexico Federico Gómez, for technical support on histology.


Children’s Hospital of Mexico Federico Gómez as part of HIM/2012/016 SSA 1025 federal grant supported this work.

Compliance with Ethical Standards

Conflict of interest

The author Sánchez-Gómez M. C. has received research grants from CoNaCyT MSc (426432). The other authors declare that they have no conflict of interest related this work.

Ethical approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For the biopsy bank of the Pathology Department of the HIMFG this type of study formal consent is not required.”


  1. 1.
    Allen HD, Driscoll DJ, Shaddy RE, Feltes TF (2013) Moss & adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. Wolters Kluwer Health, PhiladelphiaGoogle Scholar
  2. 2.
    Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115(2):163–172. doi:  10.1161/CIRCULATIONAHA.106.627224 CrossRefPubMedGoogle Scholar
  3. 3.
    Hoffman JI, Christianson R (1978) Congenital heart disease in a cohort of 19,502 births with long-term follow-up. Am J Cardiol 42(4):641–647CrossRefPubMedGoogle Scholar
  4. 4.
    Yang Q, Chen H, Correa A, Devine O, Mathews TJ, Honein MA (2006) Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birth Defects Res Part A 76(10):706–713. doi: 10.1002/bdra.20308 CrossRefGoogle Scholar
  5. 5.
    Hofmann U, Ertl G, Frantz S (2011) Toll-like receptors as potential therapeutic targets in cardiac dysfunction. Expert Opin Ther Targets 15(6):753–765. doi: 10.1517/14728222.2011.566560 CrossRefPubMedGoogle Scholar
  6. 6.
    de la Cruz MV, Markwald RR, Krug EL, Rumenoff L, Sanchez Gomez C, Sadowinski S, Galicia TD, Gomez F, Salazar Garcia M, Villavicencio Guzman L, Reyes Angeles L, Moreno-Rodriguez RA (2001) Living morphogenesis of the ventricles and congenital pathology of their component parts. Cardiol Young 11(6):588–600CrossRefPubMedGoogle Scholar
  7. 7.
    Escudero EM, Pinilla OA (2007) Paradigms and paradoxes of left ventricular hypertrophy: from the research laboratory to the clinical consultation. Arch Cardiol Mex 77(3):237–248PubMedGoogle Scholar
  8. 8.
    Lane RE, Cowie MR, Chow AW (2005) Prediction and prevention of sudden cardiac death in heart failure. Heart 91(5):674–680. doi: 10.1136/hrt.2003.025254 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sander TL, Klinkner DB, Tomita-Mitchell A, Mitchell ME (2006) Molecular and cellular basis of congenital heart disease. Pediatr Clin N Am 53(5):989–1009, doi: 10.1016/j.pcl.2006.08.010 CrossRefGoogle Scholar
  10. 10.
    D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773. doi: 10.1093/eurheartj/ehq167ehq167 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267. doi:  10.1161/CIRCULATIONAHA.107.687947 CrossRefPubMedGoogle Scholar
  12. 12.
    Oliveira-Carvalho V, Carvalho VO, Silva MM, Guimaraes GV, Bocchi EA (2012) MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure? Arq Bras Cardiol 98(4):362–369 pii]CrossRefPubMedGoogle Scholar
  13. 13.
    Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083. doi: 10.1161/CIRCRESAHA.108.183087103/10/1072 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW 2nd (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106(1):166–175. doi: 10.1161/CIRCRESAHA.109.202176 CrossRefPubMedGoogle Scholar
  15. 15.
    Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173.doi:  10.1161/01.RES.0000265065.26744.17 CrossRefPubMedGoogle Scholar
  16. 16.
    Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424.doi:  10.1161/01.RES.0000257913.42552.23 CrossRefPubMedGoogle Scholar
  17. 17.
    Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J, Westermann D, Bisping E, Ly H, Wang X, Kawase Y, Chen J, Liang L, Sipo I, Vetter R, Weger S, Kurreck J, Erdmann V, Tschope C, Pieske B, Lebeche D, Schultheiss HP, Hajjar RJ, Poller WC (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119(9):1241–1252. doi: 10.1161/CIRCULATIONAHA.108.783852 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103(48):18255–18260. doi:  10.1073/pnas.0608791103 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR, Pu WT (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29(8):2193–2204. doi: 10.1128/MCB.01222-08 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ai J, Zhang R, Gao X, Niu HF, Wang N, Xu Y, Li Y, Ma N, Sun LH, Pan ZW, Li WM, Yang BF (2012) Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc Res 95(3):385–393. doi: 10.1093/cvr/cvs196 CrossRefPubMedGoogle Scholar
  21. 21.
    Da Costa A, Gate-Martinet A, Rouffiange P, Cerisier A, Nadrouss A, Bisch L, Romeyer-Bouchard C, Isaaz K (2012) Anatomical factors involved in difficult cardiac resynchronization therapy procedure: a non-invasive study using dual-source 64-multi-slice computed tomography. Europace 14(6):833–840. doi: 10.1093/europace/eur350 CrossRefPubMedGoogle Scholar
  22. 22.
    Gladka MM, da Costa Martins PA, De Windt LJ (2012) Small changes can make a big difference—microRNA regulation of cardiac hypertrophy. J Mol Cell Cardiol 52(1):74–82. doi: 10.1016/j.yjmcc.2011.09.015 CrossRefPubMedGoogle Scholar
  23. 23.
    Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, Qin YW, Jing Q (2010) Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 123(14):2444–2452. doi: 10.1242/jcs.067165 Google Scholar
  24. 24.
    Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2(2):e000078. doi: 10.1161/JAHA.113.000078 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22 (23):3242–3254. doi: 10.1101/gad.1738708 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598. doi: 10.1038/cdd.2009.153 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Courts C, Grabmuller M, Madea B (2013) Dysregulation of heart and brain specific micro-RNA in sudden infant death syndrome. Forensic Sci Int 228(1–3):70–74. doi: 10.1016/j.forsciint.2013.02.032 CrossRefPubMedGoogle Scholar
  28. 28.
    Chen Z, Li C, Xu Y, Li Y, Yang H, Rao L (2014) Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PloS ONE 9(8):e105702. doi: 10.1371/journal.pone.0105702 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li J, Cao Y, Ma XJ, Wang HJ, Zhang J, Luo X, Chen W, Wu Y, Meng Y, Zhang J, Yuan Y, Ma D, Huang GY (2013) Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol 168(2):1441–1446. doi: 10.1016/j.ijcard.2012.12.048 CrossRefPubMedGoogle Scholar
  30. 30.
    Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491. doi: 10.1038/nm1569 CrossRefPubMedGoogle Scholar
  31. 31.
    Reddy S, Zhao M, Hu DQ, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D (2012) Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genom 44(10):562–575. doi: 10.1152/physiolgenomics.00163.2011 CrossRefGoogle Scholar
  32. 32.
    Gupta MP (2007) Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 43(4):388–403. doi: 10.1016/j.yjmcc.2007.07.045 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nelson TJ, Balza R Jr, Xiao Q, Misra RP (2005) SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. J Mol Cell Cardiol 39(3):479–489. doi: 10.1016/j.yjmcc.2005.05.004 CrossRefPubMedGoogle Scholar
  34. 34.
    Hu X, Li T, Zhang C, Liu Y, Xu M, Wang W, Jia Z, Ma K, Zhang Y, Zhou C (2011) GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 15(9):1865–1877. doi: 10.1111/j.1582-4934.2010.01182.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Molkentin JD, Olson EN (1997) GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 96(11):3833–3835PubMedGoogle Scholar
  36. 36.
    Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94(1):110–118. doi: 10.1161/01.RES.0000109415.17511.18 CrossRefPubMedGoogle Scholar
  37. 37.
    Houser SR, Molkentin JD (2008) Does contractile Ca2 + control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? Sci Signal 1(25):e31. doi: 10.1126/scisignal.125pe31 CrossRefGoogle Scholar
  38. 38.
    Jiang DS, Luo YX, Zhang R, Zhang XD, Chen HZ, Zhang Y, Chen K, Zhang SM, Fan GC, Liu PP, Liu DP, Li H (2014) Interferon regulatory factor 9 protects against cardiac hypertrophy by targeting myocardin. Hypertension 63(1):119–127. doi: 10.1161/HYPERTENSIONAHA.113.02083 CrossRefPubMedGoogle Scholar
  39. 39.
    Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, Molkentin JD (2006) Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 98(6):837–845. doi: 10.1161/01.RES.0000215985.18538.c4 CrossRefPubMedGoogle Scholar
  40. 40.
    Molkentin JD, Kalvakolanu DV, Markham BE (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14(7):4947–4957CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ip HS, Wilson DB, Heikinheimo M, Leiden JM, Parmacek MS (1995) The GATA-4 transcription factor transactivates the cardiac-specific troponin C promoter-enhancer in non-muscle cells. Adv Exp Med Biol 382:117–124CrossRefPubMedGoogle Scholar
  42. 42.
    Murphy AM, Thompson WR, Peng LF, Jones L 2nd (1997) Regulation of the rat cardiac troponin I gene by the transcription factor GATA-4. Biochem J 322(Pt 2):393–401CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Charvet C, Auberger P, Tartare-Deckert S, Bernard A, Deckert M (2002) Vav1 couples T cell receptor to serum response factor-dependent transcription via a MEK-dependent pathway. J Biol Chem 277(18):15376–15384. doi: 10.1074/jbc.M111627200 CrossRefPubMedGoogle Scholar
  44. 44.
    Yang SH, Galanis A, Sharrocks AD (1999) Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 19(6):4028–4038CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J (1999) Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19(1):21–30CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, Li X, Li B, Lu Y, Yang B, Shan H (2010) Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem 26(6):991–998. doi: 10.1159/000324012 CrossRefPubMedGoogle Scholar
  47. 47.
    McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47CrossRefPubMedGoogle Scholar
  48. 48.
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. doi: 10.1038/nm1582 CrossRefPubMedGoogle Scholar
  49. 49.
    Schier JJ, Adelstein RS (1982) Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest 69(4):816–825CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hua Y, Zhang Y, Ren J (2012) IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J Cell Mol Med 16(1):83–95. doi: 10.1111/j.1582-4934.2011.01307.x CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang HS, Wu QY, Xu M, Zhou YX, Shui CX (2012) Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot. Chin Med J (Engl) 125(13):2243–2249Google Scholar
  52. 52.
    Nomura S (2017) Extracellular vesicles and blood diseases. Int J Hematol. doi: 10.1007/s12185-017-2180-x Google Scholar
  53. 53.
    Ibrahim A, Marban E (2016) Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol 78:67–83. doi: 10.1146/annurev-physiol-021115-104929 CrossRefPubMedGoogle Scholar
  54. 54.
    Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, Dart AM (2015) Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med 13:314. doi: 10.1186/s12967-015-0672-0 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE, Investigators IP (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124(23):2491–2501. doi: 10.1161/CIRCULATIONAHA.110.011031 CrossRefPubMedGoogle Scholar
  56. 56.
    Schulte C, Zeller T (2015) microRNA-based diagnostics and therapy in cardiovascular disease-summing up the facts. Cardiovasc Diagn Ther 5(1):17–36. doi: 10.3978/j.issn.2223-3652.2014.12.03 PubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. doi: 10.1093/eurheartj/ehq013 CrossRefPubMedGoogle Scholar
  58. 58.
    Coffey S, Williams MJ, Phillips LV, Jones GT (2015) Circulating microRNA profiling needs further refinement before clinical use in patients with aortic stenosis. J Am Heart Assoc 4(8):e002150. doi: 10.1161/JAHA.115.002150 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q, Galuppo P, Kneitz S, Mayr M, Ertl G, Bauersachs J, Thum T (2010) Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res 107(1):138–143. doi: 10.1161/CIRCRESAHA.110.216770 CrossRefPubMedGoogle Scholar
  60. 60.
    Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genom 31(3):367–373.doi:  10.1152/physiolgenomics.00144.2007 CrossRefGoogle Scholar
  61. 61.
    Sygitowicz G, Tomaniak M, Blaszczyk O, Koltowski L, Filipiak KJ, Sitkiewicz D (2015) Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: preliminary results. Arch Cardiovasc Dis 108(12):634–642. doi: 10.1016/j.acvd.2015.07.003 CrossRefPubMedGoogle Scholar
  62. 62.
    Villar AV, Garcia R, Merino D, Llano M, Cobo M, Montalvo C, Martin-Duran R, Hurle MA, Nistal JF (2013) Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol 167(6):2875–2881. doi: 10.1016/j.ijcard.2012.07.021 CrossRefPubMedGoogle Scholar
  63. 63.
    Liu X, Dong Y, Chen S, Zhang G, Zhang M, Gong Y, Li X (2015) Circulating microRNA-146a and microRNA-21 predict left ventricular remodeling after ST-elevation myocardial infarction. Cardiology 132(4):233–241. doi: 10.1159/000437090 CrossRefPubMedGoogle Scholar
  64. 64.
    Guo C, Deng Y, Liu J, Qian L (2015) Cardiomyocyte-specific role of miR-24 in promoting cell survival. J Cell Mol Med 19(1):103–112. doi: 10.1111/jcmm.12393 CrossRefPubMedGoogle Scholar
  65. 65.
    Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF (2012) Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 287(1):589–599. doi: 10.1074/jbc.M111.266940 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ma. C. Sánchez-Gómez
    • 1
    • 5
  • K. A. García-Mejía
    • 1
  • M. Pérez-Díaz Conti
    • 2
  • G. Díaz-Rosas
    • 1
  • I. Palma-Lara
    • 5
  • R. Sánchez-Urbina
    • 1
  • M. Klünder-Klünder
    • 4
  • J. A. Botello-Flores
    • 1
  • N. A. Balderrábano- Saucedo
    • 3
  • A. Contreras-Ramos
    • 1
  1. 1.Laboratory of Developmental Biology Research and Experimental TeratogenicityChildren’s Hospital of Mexico Federico Gomez (HIMFG)Mexico CityMexico
  2. 2.Department of PathologyHIMFGMexico CityMexico
  3. 3.Laboratory of Cardiomyopathies and ArrhythmiasHIMFGMexico CityMexico
  4. 4.Department of Community HealthHIMFGMexico CityMexico
  5. 5.School of MedicineNational Polytechnic Institute (IPN)Mexico CityMexico

Personalised recommendations