Skip to main content

Low Iron Stores in Otherwise Healthy Children Affect Electrocardiographic Markers of Important Cardiac Events

Abstract

Both an excess of iron and iron deficiency (ID) may lead to significant cardiac problems. Parameters that represent ventricular repolarization heterogeneity, like QT dispersion (QTd), corrected QT dispersion (QTcd), the interval between the peak and the end of the T wave (Tp-e), and Tp-e dispersion, have not been evaluated in otherwise healthy children with low iron levels before. Here we assessed the effects of low iron storage on P wave dispersion (PWd), QTd, Tp-e intervals, and Tp-e dispersion in otherwise healthy children. We prospectively reviewed 283 patients who were referred to pediatric cardiology department for cardiac evaluation due to murmurs and who were found to have no structural heart disease. The patients were divided into three groups according to their ferritin levels: Group 1: ferritin <15 ng/mL (n = 58); Group 2: ferritin 15–25 ng/mL (n = 80); Group 3: ferritin >25 ng/mL (n = 145). P wave duration (PW), QT and Tp-e intervals, and PW, QT, corrected QT (QTc), and Tp-e dispersions were significantly higher in patients whose ferritin level was <15 ng/mL. A negative correlation was found between ferritin level and QT and QTc intervals, and QT, QTc, and Tp-e dispersions. Our results showed that a low serum ferritin level is associated with changes in some ECG parameters such as prolonged PWd, Tp-e interval, QT, QTc, and Tp-e dispersions in otherwise healthy children, and studies of other populations indicated that these parameters may predict arrhythmias in selected patients. These patients may be considered at some risk of developing arrhythmias. Therefore, careful evaluation of these ECG parameters is necessary in otherwise healthy children with low iron stores.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hegde N, Rich MW, Gayomali C (2006) The cardiomyopathy of iron deficiency. Tex Heart Inst J 33:340–344

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Stoltzfus RJ (2003) Iron deficiency: global prevalence and consequences. Food Nutr Bull 24:99–103

    Article  Google Scholar 

  3. 3.

    Mantadakis E (2016) Advances in pediatric intravenous iron therapy. Pediatr Blood Cancer 63:11–16

    Article  PubMed  Google Scholar 

  4. 4.

    Jankowska EA, Ponikowski P (2010) Molecularchanges in myocardium in the course of anemia or irondeficiency. Heart Fail Clin 6:295–304

    Article  PubMed  Google Scholar 

  5. 5.

    Sarnak MJ, Tighiouart H, Manjunath G, MacLeod B, Griffith J, Salem D, Levey AS (2002) Anemia as a risk factor for cardiovascular disease in the atherosclerosis risk in communities (ARIC) study. J Am Coll Cardiol 40:27–33

    Article  PubMed  Google Scholar 

  6. 6.

    Turner LR, Premo DA, Gibbs BJ, Hearthway ML, Motsko M, Sappington A, Walker L, Mullendore ME, Chew HG Jr (2002) Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta blockade on cardiac hypertrophy. BMC Physiol 2:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kikuchi M, Inagaki T (1999) Atrial natriuretic peptide in aged patients with iron deficiency anemia. Arch Gerontol Geriatr 28:105–115

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Mehta BC, Panjwani DD, Jhala DA (1983) Electrophysiologic abnormalities of heart in iron deficiency anemia. Effect of iron therapy. Acta Haematol 70:189–193

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hayashi R, Ogawa S, Watanabe Z, Yamamoto M (1999) Cardiovascular function before and after iron therapy by echocardiography in patients with iron deficiency anemia. Pediatr Int 41:13–17

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Schinasi DA, Schapiro E, Shah M (2011) Ectopic atrial tachycardia in an infant with transient erythroblastopenia of childhood. Pediatr Emerg Care 27:657–659

    Article  PubMed  Google Scholar 

  11. 11.

    Castro-Torres Y, Carmona-Puerta R, Katholi RE (2015) Ventricular repolarization markers for predicting malignant arrhythmias in clinical practice. World J Clin Cases 3:705–720

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dilaveris PE, Gialafos EJ, Sideris SK, Theopistou AM, Andrikopoulos GK, Kyriakidis M, Gialafos JE, Toutouzas PK (1998) Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J 135:733–738

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ozer N, Aytemir K, Atalar E, Sade E, Aksoyek S, Ovunc K Oto A, Ozmen F, Kes S (2000) P-wave dispersion on 12-lead electrocardiography in patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 23:1109–1112

    Article  PubMed  Google Scholar 

  14. 14.

    Bluzaite I, Brazdzionyte J, Zaliunas R, Rickli H, Ammann P (2006) QT dispersion and heart rate variability in sudden death risk stratification in patients with ischemic heart disease. Med Kaunas 42:450–454

    Google Scholar 

  15. 15.

    Pye M, Quinn AC, Cobbe SM (1994) QT interval dispersion: a noninvasive marker of susceptibility to arrhythmia in patients with sustained ventricular arrhythmias? Br Heart J 71:511–514

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ulger Z, Aydinok Y, Levent E, Gurses D, Ozyurek AR (2006) Evaluation of QT dispersion in beta thalassemia major patients. Am J Hematol 81:901–906

    Article  PubMed  Google Scholar 

  17. 17.

    Okin PM, Devereux RB, Howard BV, Fabsitz RR, Lee ET, Welty TK (2000) Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality in American Indians: the Strong Heart Study. Circulation 101:61–66

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kors JA, Ritsema van Eck HJ, van Herpen G (2008) The meaning of the Tp-Te interval and its diagnostic value. J Electrocardiol 41:575–580

    Article  PubMed  Google Scholar 

  19. 19.

    Lubinski A, Kornacewicz-Jach Z, Wnuk-Wojnar AM, Adamus J, Kempa M, Królak T, Lewicka-Nowak E, Radomski M, Swiatecka G (2000) The terminal portion of the T wave: a new electrocardiographic marker of risk of ventricular arrhythmias. Pacing Clin Electrophysiol 23:1957–1959

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, Yan GX (2008) T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol 41:567–574

    Article  PubMed  Google Scholar 

  21. 21.

    Yan GX, Antzelevitch C (1998) Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation 98:1928–1936

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Castro Hevia J, Antzelevitch C, TornesBarzaga F, Dorantes Sanchez M, DorticosBalea F, Zayas Molina R, Quiñones Pérez MA, Fayad Rodríguez Y (2006) Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol 47:1828–1834

    Article  PubMed  Google Scholar 

  23. 23.

    Shimizu M, Ino H, Okeie K, Yamaguchi M, Nagata M, Hayashi K, Itoh H, Iwaki T, Oe K, Konno T, Mabuchi H (2002) T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol 25:335–339

    Article  PubMed  Google Scholar 

  24. 24.

    Simsek H, Gunes Y, Demir C, Sahin M, Gumrukcuoglu HA, Tuncer M (2010) The effects of irondeficiencyanemia on pwaveduration and dispersion. Clinics 65:1067–1071

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Karadeniz C, Ozdemir R, Demir F, Yozgat Y, Küçük M, Oner T, Karaarslan U, Meşe T, Unal N (2014) Increased P-wave and QT dispersions necessitate long-term follow-up evaluation of Down syndrome patients with congenitally normal hearts. Pediatr Cardiol 35:1344–1348

    Article  PubMed  Google Scholar 

  26. 26.

    Bazett HC (1920) An analysis of the time relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  27. 27.

    Kilicaslan F, Tokatli A, Ozdag F, Uzun M, Uz O, Isilak Z, Yiginer O, Yalcin M, Guney MS, Cebeci BS (2012) Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio are prolonged in patients with moderate and severe obstructive sleep apnea. Pacing Clin Electrophysiol 35:966–972

    Article  PubMed  Google Scholar 

  28. 28.

    Hallberg L, Bengtsson C, Lapidus L, Lindstedt G, Lundberg PA, Hultén L (1993) Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Haematol 85:787–798

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Milman N, Ulrik CS, Graudal N, Jordal R (1997) Iron status in young Danes: evaluation by serum ferritin and haemoglobin in a population of 634 individuals aged 14–23 year. Eur J Haematol 58:160–166

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Das BB, Sharma J (2004) Repolarization abnormalities in children with a structurally normal heart and ventricular ectopy. Pediatr Cardiol 25:354–356

    CAS  PubMed  Google Scholar 

  31. 31.

    Bavbek N, Yilmaz H, Erdemli HK, Selcuki Y, Duranay M, Akçay A (2014) Correlation between iron stores and QTc dispersion in chronic ambulatory peritoneal dialysis patients. Ren Fail 36:187–190

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Akalin F, Turan S, Güran T, Ayabakan C, Yilmaz Y (2004) Increased QT dispersion in breath-holding spells. Acta Paediatr 93:770–774

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Haarmark C, Hansen PR, Vedel-Larsen E, Pedersen SH, Graff C, Andersen MP, Toft E, Wang F, Struijk JJ, Kanters JK (2009) The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Electrocardiol 42:555–560

    Article  PubMed  Google Scholar 

  34. 34.

    Letsas KP, Weber R, Astheimer K, Kalusche D, Arentz T (2010) Tpeak-Tend interval and Tpeak-Tend/QT ratio as markers of ventricular tachycardia inducibility in subjects with Brugada ECG phenotype. Europace 12:271–274

    Article  PubMed  Google Scholar 

  35. 35.

    Yildiz M, Pazarli P, Semiz O, Kahyaoglu O, Sakar I, Altinkaynak S (2008) Assessment of P-wave dispersion on 12-lead electrocardiography in students who exercise regularly. Pacing Clin Electrophysiol 31:580–583

    Article  PubMed  Google Scholar 

  36. 36.

    Yildiz M, Aygin D, Pazarli P, Sayan A, Semiz O, Kahyaoglu O, Yildiz BS, Hasdemir H, Akin I, Keser N, Altinkaynak S (2011) Assessment of resting electrocardiogram, P wave dispersion and duration in different genders applying for registration to the School of Physical Education and Sports: results of a single centre Turkish Trial with 2093 healthy subjects. Cardiol Young 21:545–550

    Article  PubMed  Google Scholar 

  37. 37.

    Okonko DO, Grzeslo A, Witkowski T, Mandal AK, Slater RM, Roughton M, Foldes G, Thum T, Majda J, Banasiak W, Missouris CG, Poole-Wilson PA, Anker SD, Ponikowski P (2008) Effect of intravenous iron sucrose on exercise tolerance in anemic and non anemicpatients with symptomatic chronic heart failure and iron deficiency FERRICHF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol 51:103–112

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

No external funding was used for this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cem Karadeniz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karadeniz, C., Özdemir, R., Demirol, M. et al. Low Iron Stores in Otherwise Healthy Children Affect Electrocardiographic Markers of Important Cardiac Events. Pediatr Cardiol 38, 909–914 (2017). https://doi.org/10.1007/s00246-017-1596-7

Download citation

Keywords

  • Anemia
  • Ferritin
  • Iron deficiency
  • Tp-e interval
  • Tp-e dispersion