Skip to main content
Log in

Transcatheter Pulmonary Valve Replacement and Acute Increase in Diastolic Pressure are Associated with Increases in Both Systolic and Diastolic Pulmonary Artery Dimensions

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Stable positioning of a transcatheter pulmonary valve (TPV) in native outflow tracts depends on a clear understanding of underlying anatomy and outflow tract dimensions. We hypothesized that restoration of pulmonary competence may acutely alter these dimensions. A retrospective single-center review of consecutive patients after TPV placement from 2007 to 2014 was performed. Patients with less than moderate pulmonary regurgitation were excluded. We reviewed acute catheterization data on 46 patients, most with tetralogy of Fallot (70%). Baseline and post-implant (7.5 ± 3 min post-deployment) measurements of central pulmonary arteries (PAs) were determined angiographically. The right PA diameter increased (20 ± 4–24 ± 6 mm systole*, 16 ± 4–21 ± 6 mm diastole*), as did the left PA (20 ± 6–24 ± 8 mm systole*, 16 ± 5–21 ± 7 mm diastole*). PA pressures increased from averages of 29.3/10.6 (17) to 29.8/15.1 (21) mmHg. We noted that pre-implant systolic PA diameter correlated with diastolic PA diameter post-implant (r = 0.9). On follow-up catheterization in seven patients [median 3 years; (1–8)], combined central PA diameter decreased an average of 20% (systole: 20% ± 12, diastole: 18% ± 11) as compared to post-implant measurements. Acute pulmonary valve competence in patients with at least moderate pulmonary regurgitation results in an immediate increase in PA diameter (20% systole and 30% diastole). The cause of this diameter change is unclear. This acute change may have implications for device and patient selection (*p < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coats L, Khambadkone S, Derrick G et al (2007) Physiological consequences of percutaneous pulmonary valve implantation: the different behaviour of volume- and pressure-overloaded ventricles. Eur Heart J 28:1886–1893. doi:10.1093/eurheartj/ehm181

    Article  PubMed  Google Scholar 

  2. Lurz P, Gaudin R, Taylor AM, Bonhoeffer P (2009) Percutaneous pulmonary valve implantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 12:112–117. doi:10.1053/j.pcsu.2009.01.011

    Article  Google Scholar 

  3. Zahn EM, Hellenbrand WE, Lock JE, McElhinney DB (2009) Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the U.S. Clinical trial. J Am Coll Cardiol 54:1722–1729. doi:10.1016/j.jacc.2009.06.034

    Article  PubMed  Google Scholar 

  4. Kenny D, Hijazi ZM, Kar S et al (2011) Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. J Am Coll Cardiol 58:2248–2256. doi:10.1016/j.jacc.2011.07.040

    Article  PubMed  Google Scholar 

  5. Hallbergson A, Gauvreau K, Powell AJ, Geva T (2014) Right ventricular remodeling after pulmonary valve replacement: early gains, late losses. Ann Thorac Surg. doi:10.1016/j.athoracsur.2014.09.015

    Google Scholar 

  6. Jalal Z, Thambo J-B, Boudjemline Y (2014) The future of transcatheter pulmonary valvulation. Arch Cardiovasc Dis 107:635–642. doi:10.1016/j.acvd.2014.07.046

    Article  PubMed  Google Scholar 

  7. Cao Q-L, Kenny D, Zhou D et al (2014) Early clinical experience with a novel self-expanding percutaneous stent-valve in the native right ventricular outflow tract. Catheter Cardiovasc Interv 84:1131–1137. doi:10.1002/ccd.25544

    Article  PubMed  Google Scholar 

  8. Attmann T, Quaden R, Jahnke T et al (2006) Percutaneous pulmonary valve replacement: 3-month evaluation of self-expanding valved stents. Ann Thorac Surg 82:708–713. doi:10.1016/j.athoracsur.2006.01.096

    Article  PubMed  Google Scholar 

  9. Cheatham JP, Bergersen L, Gillespie M et al (2016) Initial results from the early feasibility study of the Medtronic native outflow tract transcatheter pulmonary valve. J Am Coll Cardiol 67:929. doi:10.1016/S0735-1097(16)30930-5

    Article  Google Scholar 

  10. Sanz J, Kariisa M, Dellegrottaglie S et al (2009) Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2:286–295. doi:10.1016/j.jcmg.2008.08.007

    Article  PubMed  Google Scholar 

  11. O’Rourke MF, Staessen JA, Vlachopoulos C et al (2002) Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens 15:426–444

    Article  PubMed  Google Scholar 

  12. Khambadkone S, Coats L, Taylor A et al (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112:1189–1197. doi:10.1161/CIRCULATIONAHA.104.523266

    Article  PubMed  Google Scholar 

  13. Reeves JT, Linehan JH, Stenmark KR (2005) Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol 288:L419–L425. doi:10.1152/ajplung.00162.2004

    Article  CAS  PubMed  Google Scholar 

  14. Naeije R, Chesler N (2011) Pulmonary circulation at exercise. Compr Physiol 2:711-741. doi:10.1002/cphy.c100091

    Google Scholar 

  15. Ghio S, Schirinzi S, Pica S (2015) Pulmonary arterial compliance: how and why should we measure it? Glob Cardiol Sci Pract 2015:58. doi:10.5339/gcsp.2015.58

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aramendia P, Taguini CM, Fourcade A, Taguini AC (1963) Reflex vasomotor activity during unilateral occlusion of the pulmonary artery. Am Heart J 66:53–60

    Article  CAS  PubMed  Google Scholar 

  17. Hyman AL (1968) Pulmonary vasoconstriction due to nonocclusive distention of large pulmonary arteries in the dog. Circ Res 23:401–413

    Article  CAS  PubMed  Google Scholar 

  18. Juratsch CE, Jengo JA, Castagna J, Laks MM (1980) Experimental pulmonary hypertension produced by surgical and chemical denervation of the pulmonary vasculature. Chest 77:525–530

    Article  CAS  PubMed  Google Scholar 

  19. Juratsch CE, Emmanouilides GC, Thibeault DW et al (1980) Pulmonary arterial hypertension induced by distention of the main pulmonary artery in conscious newborn, young, and adult sheep. Pediatr Res 14:1332–1338. doi:10.1203/00006450-198012000-00012

    Article  CAS  PubMed  Google Scholar 

  20. Laks MM, Juratsch CE, Garner D et al (1975) Acute pulmonary artery hypertension produced by distention of the main pulmonary artery in the conscious dog. Chest 68:807–813

    Article  CAS  PubMed  Google Scholar 

  21. Capelli C, Taylor AM, Migliavacca F et al (2010) Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos Trans A Math Phys Eng Sci 368:3027–3038. doi:10.1098/rsta.2010.0088

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pektas A, Olgunturk R, Cevik A et al (2015) Magnetic resonance imaging in pediatric pulmonary hypertension. Tex Heart Inst J 42:209–215. doi:10.14503/THIJ-13-3998

    Article  PubMed  PubMed Central  Google Scholar 

  23. Berger RMF, Cromme-Dijkhuis AH, Hop WCJ et al (2002) Pulmonary arterial wall distensibility assessed by intravascular ultrasound in children with congenital heart disease: an indicator for pulmonary vascular disease? Chest 122:549–557

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Callahan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal and Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional and/or National Research Committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. For this type of study, formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callahan, R., Bergersen, L., Lock, J.E. et al. Transcatheter Pulmonary Valve Replacement and Acute Increase in Diastolic Pressure are Associated with Increases in Both Systolic and Diastolic Pulmonary Artery Dimensions. Pediatr Cardiol 38, 456–464 (2017). https://doi.org/10.1007/s00246-016-1535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1535-z

Keywords

Navigation