Pediatric Cardiology

, Volume 37, Issue 6, pp 993–1002 | Cite as

The Prevalence of Left Ventricular Hypertrophy in Obese Children Varies Depending on the Method Utilized to Determine Left Ventricular Mass

  • Joseph MahgereftehEmail author
  • Jarrett Linder
  • Ellen J. Silver
  • Penelope Hazin
  • Scott Ceresnak
  • Daphne Hsu
  • Leo Lopez
Original Article


Obesity and left ventricular hypertrophy (LVH) have been identified as independent risk factors for cardiovascular events. The definition of LVH depends on the geometric algorithm used to calculate LV mass (LVM) by echocardiography and the method used to normalize LVM for body size. This study evaluates the effect of these methods on the prevalence of LVH in obese children. LVM for 109 obese and 109 age-matched non-obese children was calculated using M-mode or two-dimensional echocardiography (2DE). LVM was then normalized to height 2.7 as indexed LVM (LVMI), to body surface area (BSA), height, and lean body mass (LBM) as LVM Z-scores. LVH was defined as LVMI >95th ‰ using age-specific normal reference values or LVM Z-scores ≥2. The prevalence of LVH by LVMI and LVM Z-scores was compared. There was a correlation between LVM determined by M-mode and by 2DE (R 2 = 0.91), although M-mode LVM was greater than 2DE LVM. However, the difference between these values was greater in obese children than in non-obese children. Based on the method of normalization, the prevalence of LVH among obese children was 64 % using LVMI, 15 % using LVM Z-scores for height, 8 % using LVM Z-scores for BSA and 1 % using LVM Z-scores for LBM. Height-based normalization correlates with obesity and hypertension. The methods used to measure and normalize LVM have a profound influence on the diagnosis of LVH in obese children. Further study is needed to determine which method identifies children at risk for cardiovascular morbidity and mortality.


Left ventricular mass Left ventricular hypertrophy Obesity Pediatric echocardiogram 


Compliance with Ethical Standards

Conflict of interest



  1. 1.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566. doi: 10.1056/NEJM199005313222203 CrossRefPubMedGoogle Scholar
  2. 2.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289(19):2560–2572. doi: 10.1001/jama.289.19.2560 CrossRefPubMedGoogle Scholar
  3. 3.
    Mancini GB, Dahlof B, Diez J (2004) Surrogate markers for cardiovascular disease: structural markers. Circulation. doi: 10.1161/01.CIR.0000133443.77237.2f Google Scholar
  4. 4.
    Ruilope LM, Schmieder RE (2008) Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens 21(5):500–508. doi: 10.1038/ajh.2008.16 CrossRefPubMedGoogle Scholar
  5. 5.
    Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35(3):569–582CrossRefPubMedGoogle Scholar
  6. 6.
    Sluysmans T, Colan SD (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99(2):445–457. doi: 10.1152/japplphysiol.01144.2004 CrossRefPubMedGoogle Scholar
  7. 7.
    Richey PA, Disessa TG, Somes GW, Alpert BS, Jones DP (2010) Left ventricular geometry in children and adolescents with primary hypertension. Am J Hypertens 23(1):24–29. doi: 10.1038/ajh.2009.164 CrossRefPubMedGoogle Scholar
  8. 8.
    Malcolm DD, Burns TL, Mahoney LT, Lauer RM (1993) Factors affecting left ventricular mass in childhood: the Muscatine Study. Pediatrics 92(5):703–709PubMedGoogle Scholar
  9. 9.
    Daniels SD, Meyer RA, Loggie JM (1990) Determinants of cardiac involvement in children and adolescents with essential hypertension. Circulation 82(4):1243–1248CrossRefPubMedGoogle Scholar
  10. 10.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2 Suppl 4th Report):555–576CrossRefGoogle Scholar
  11. 11.
    Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM (2013) Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol 62(15):1309–1319. doi: 10.1016/j.jacc.2013.07.042 CrossRefPubMedGoogle Scholar
  12. 12.
    Mehta SK, Richards N, Lorber R, Rosenthal GL (2009) Abdominal obesity, waist circumference, body mass index, and echocardiographic measures in children and adolescents. Congenit Heart Dis 4(5):338–347. doi: 10.1111/j.1747-0803.2009.00330.x CrossRefPubMedGoogle Scholar
  13. 13.
    Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW (2011) Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity 19(1):128–133. doi: 10.1038/oby.2010.134 CrossRefPubMedGoogle Scholar
  14. 14.
    Van Putte-Katier N, Rooman RP, Haas L, Verhulst SL, Desager KN, Ramet J, Suys BE (2008) Early cardiac abnormalities in obese children: importance of obesity per se versus associated cardiovascular risk factors. Pediatr Res 64(2):205–209. doi: 10.1203/PDR.0b013e318176182b CrossRefPubMedGoogle Scholar
  15. 15.
    Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, Devereux RB (2006) Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol 47(11):2267–2273. doi: 10.1016/j.jacc.2006.03.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Schuster I, Karpoff L, Perez-Martin A, Oudot C, Startun A, Rubini M, Obert P, Vinet A (2009) Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity 17(10):1878–1883. doi: 10.1038/oby.2009.197 CrossRefPubMedGoogle Scholar
  17. 17.
    Sharpe JA, Naylor LH, Jones TW, Davis EA, O’Driscoll G, Ramsay JM, Green DJ (2006) Impact of obesity on diastolic function in subjects ≤16 years of age. Am J Cardiol 98(5):691–693. doi: 10.1016/j.amjcard.2006.03.052 CrossRefPubMedGoogle Scholar
  18. 18.
    Di Bonito P, Capaldo B, Forziato C, Sanguigno E, Di Fraia T, Scilla C, Cavuto L, Saitta F, Sibilio G, Moio N (2008) Central adiposity and left ventricular mass in obese children. Nutr Metab Cardiovasc Dis NMCD 18(9):613–617. doi: 10.1016/j.numecd.2007.09.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Friedman KG, McElhinney DB, Rhodes J, Powell AJ, Colan SD, Lock JE, Brown DW (2012) Left ventricular diastolic function in children and young adults with congenital aortic valve disease. Am J Cardiol. doi: 10.1016/j.amjcard.2012.09.026 PubMedCentralGoogle Scholar
  20. 20.
    Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 307(5):483–490. doi: 10.1001/jama.2012.40 CrossRefPubMedGoogle Scholar
  21. 21.
    Virdis A, Ghiadoni L, Masi S, Versari D, Daghini E, Giannarelli C, Salvetti A, Taddei S (2009) Obesity in the childhood: a link to adult hypertension. Curr Pharm Des 15(10):1063–1071CrossRefPubMedGoogle Scholar
  22. 22.
    Lamb MM, Ogden CL, Carroll MD, Lacher DA, Flegal KM (2011) Association of body fat percentage with lipid concentrations in children and adolescents: United States, 1999–2004. Am J Clin Nutr 94(3):877–883. doi: 10.3945/ajcn.111.015776 CrossRefPubMedGoogle Scholar
  23. 23.
    Lambert M, Delvin EE, Levy E, O’Loughlin J, Paradis G, Barnett T, McGrath JJ (2008) Prevalence of cardiometabolic risk factors by weight status in a population-based sample of Quebec children and adolescents. Can J Cardiol 24(7):575–583CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lande MB, Pearson TA, Vermilion RP, Auinger P, Fernandez ID (2008) Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents. Pediatrics 122(6):1252–1257. doi: 10.1542/peds.2007-3162 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ford ES (2003) C-reactive protein concentration and cardiovascular disease risk factors in children: findings from the national health and nutrition examination survey 1999–2000. Circulation 108(9):1053–1058. doi: 10.1161/01.CIR.0000080913.81393.B8 CrossRefPubMedGoogle Scholar
  26. 26.
    Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. doi: 10.1016/j.echo.2010.03.019 Google Scholar
  27. 27.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 18(12):1440–1463. doi: 10.1016/j.echo.2005.10.005 CrossRefGoogle Scholar
  28. 28.
    Lu X, Xie M, Tomberlin D, Klas B, Nadvoretskiy V, Ayres N, Towbin J, Ge S (2008) How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? Am Heart J 155(5):946–953. doi: 10.1016/j.ahj.2007.11.034 CrossRefPubMedGoogle Scholar
  29. 29.
    Poutanen T, Jokinen E (2007) Left ventricular mass in 169 healthy children and young adults assessed by three-dimensional echocardiography. Pediatr Cardiol 28(3):201–207. doi: 10.1007/s00246-006-0101-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Gidding SS (2010) Controversies in the assessment of left ventricular mass. Hypertension 56(1):26–28. doi: 10.1161/HYPERTENSIONAHA.110.153346 CrossRefPubMedGoogle Scholar
  31. 31.
    Wong RC, Yip JW, Gupta A, Yang H, Ling LH (2008) Echocardiographic left ventricular mass in a multiethnic Southeast Asian population: proposed new gender and age-specific norms. Echocardiography 25(8):805–811. doi: 10.1111/j.1540-8175.2008.00709.x CrossRefPubMedGoogle Scholar
  32. 32.
    Rodriguez CJ, Diez-Roux AV, Moran A, Jin Z, Kronmal RA, Lima J, Homma S, Bluemke DA, Barr RG (2010) Left ventricular mass and ventricular remodeling among Hispanic subgroups compared with non-Hispanic blacks and whites: MESA (Multi-ethnic Study of Atherosclerosis). J Am Coll Cardiol 55(3):234–242. doi: 10.1016/j.jacc.2009.08.046 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, Pearson G, Sinha S, Arai A, Lima JA, Bluemke DA (2006) Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol 186(6 Suppl 2):S357–S365. doi: 10.2214/AJR.04.1868 CrossRefPubMedGoogle Scholar
  34. 34.
    Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 1(1):7–21Google Scholar
  35. 35.
    Cuspidi C, Meani S, Negri F, Giudici V, Valerio C, Sala C, Zanchetti A, Mancia G (2009) Indexation of left ventricular mass to body surface area and height to allometric power of 2.7: is the difference limited to obese hypertensives? J Hum Hypertens 23(11):728–734. doi: 10.1038/jhh.2009.16 CrossRefPubMedGoogle Scholar
  36. 36.
    Brumback LC, Kronmal R, Heckbert SR, Ni H, Hundley WG, Lima JA, Bluemke DA (2010) Body size adjustments for left ventricular mass by cardiovascular magnetic resonance and their impact on left ventricular hypertrophy classification. Int J Cardiovasc Imaging 26(4):459–468. doi: 10.1007/s10554-010-9584-5 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, Claessens T, Gillebert TC, St John-Sutton M, Rietzschel ER (2010) Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension 56(1):91–98. doi: 10.1161/HYPERTENSIONAHA.110.150250 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report (2011) Pediatrics 128 Suppl 5:S213–256. doi: 10.1542/peds.2009-2107C
  39. 39.
    Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA (2008) Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation 117(17):2279–2287. doi: 10.1161/CIRCULATIONAHA.107.736785 CrossRefPubMedGoogle Scholar
  40. 40.
    Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA (1995) Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol 76(10):699–701CrossRefPubMedGoogle Scholar
  41. 41.
    Foster BJ, Gao T, Mackie AS, Zemel BS, Ali H, Platt RW, Colan SD (2013) Limitations of expressing left ventricular mass relative to height and to body surface area in children. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 26(4):410–418. doi: 10.1016/j.echo.2012.11.018 CrossRefGoogle Scholar
  42. 42.
    Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, Urbina EM, Ewing LJ, Daniels SR, American Heart Association Atherosclerosis H, Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young CoNPA, Metabolism, Council on Clinical C (2013) Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. doi: 10.1161/CIR.0b013e3182a5cfb3 PubMedCentralGoogle Scholar
  43. 43.
    Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M, Rea A, Fratta F, Castaldi B, D’Andrea A, Calabro P, Miele T, Coppola F, Russo MG, Caso P, Perrone L, Calabro R (2006) Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J 27(22):2689–2695. doi: 10.1093/eurheartj/ehl163 CrossRefPubMedGoogle Scholar
  44. 44.
    McNiece KL, Gupta-Malhotra M, Samuels J, Bell C, Garcia K, Poffenbarger T, Sorof JM, Portman RJ (2007) Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension 50(2):392–395. doi: 10.1161/HYPERTENSIONAHA.107.092197 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Peralta-Huertas J, Livingstone K, Banach A, Klentrou P, O’Leary D (2008) Differences in left ventricular mass between overweight and normal-weight preadolescent children. Appl Physiol Nutr Metabol 33(6):1172–1180. doi: 10.1139/H08-082 CrossRefGoogle Scholar
  46. 46.
    Falkner B, Deloach S, Keith SW, Gidding SS (2012) High risk blood pressure and obesity increase the risk for left ventricular hypertrophy in African-American adolescents. J Pediatr. doi: 10.1016/j.jpeds.2012.06.009 PubMedCentralGoogle Scholar
  47. 47.
    Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR (2011) Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr. doi: 10.1016/j.jpeds.2010.10.016 PubMedGoogle Scholar
  48. 48.
    Hanevold C, Waller J, Daniels S, Portman R, Sorof J (2004) The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the international pediatric hypertension association. Pediatrics 113(2):328–333CrossRefPubMedGoogle Scholar
  49. 49.
    Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93(1):62–66CrossRefPubMedGoogle Scholar
  50. 50.
    Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: methods and development. Vital and health statistics Series 11. Data Natl Health Surv 246:1–190Google Scholar
  51. 51.
    Foster BJ, Platt RW, Zemel BS (2012) Development and validation of a predictive equation for lean body mass in children and adolescents. Ann Hum Biol 39(3):171–182. doi: 10.3109/03014460.2012.681800 CrossRefPubMedGoogle Scholar
  52. 52.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458CrossRefPubMedGoogle Scholar
  53. 53.
    Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD (2008) A novel method of expressing left ventricular mass relative to body size in children. Circulation 117(21):2769–2775CrossRefPubMedGoogle Scholar
  54. 54.
    Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 22(6):709–714. doi: 10.1016/j.echo.2009.03.003 CrossRefGoogle Scholar
  55. 55.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310CrossRefPubMedGoogle Scholar
  56. 56.
    Chang SA, Kim HK, Lee SC, Kim EY, Hahm SH, Kwon OM, Park SW, Choe YH, Oh JK (2013) Assessment of left ventricular mass in hypertrophic cardiomyopathy by real-time three-dimensional echocardiography using single-beat capture image. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 26(4):436–442. doi: 10.1016/j.echo.2012.12.015 CrossRefGoogle Scholar
  57. 57.
    Gutgesell HP, Rembold CM (1990) Growth of the human heart relative to body surface area. Am J Cardiol 65(9):662–668CrossRefPubMedGoogle Scholar
  58. 58.
    Simpson JM, Savis A, Rawlins D, Qureshi S, Sinha MD (2010) Incidence of left ventricular hypertrophy in children with kidney disease: impact of method of indexation of left ventricular mass. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol 11(3):271–277. doi: 10.1093/ejechocard/jep211 CrossRefGoogle Scholar
  59. 59.
    Borzych D, Bakkaloglu SA, Zaritsky J, Suarez A, Wong W, Ranchin B, Qi C, Szabo AJ, Coccia PA, Harambat J, Mitu F, Warady BA, Schaefer F (2011) Defining left ventricular hypertrophy in children on peritoneal dialysis. Clin J Am Soc Nephrol CJASN 6(8):1934–1943. doi: 10.2215/CJN.11411210 CrossRefPubMedGoogle Scholar
  60. 60.
    Myerson SG, Bellenger NG, Pennell DJ (2002) Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39(3):750–755CrossRefPubMedGoogle Scholar
  61. 61.
    Dai S, Harrist RB, Rosenthal GL, Labarthe DR (2009) Effects of body size and body fatness on left ventricular mass in children and adolescents: project HeartBeat! Am J Prev Med 37(1 Suppl):S97–S104. doi: 10.1016/j.amepre.2009.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    de Simone G, Kizer JR, Chinali M, Roman MJ, Bella JN, Best LG, Lee ET, Devereux RB, Strong Heart Study I (2005) Normalization for body size and population-attributable risk of left ventricular hypertrophy: the Strong Heart Study. Am J Hypertens 18(2 Pt 1):191–196. doi: 10.1016/j.amjhyper.2004.08.032 Google Scholar
  63. 63.
    Zong P, Zhang L, Shaban NM, Pena J, Jiang L, Taub CC (2014) Left heart chamber quantification in obese patients: how does larger body size affect echocardiographic measurements? J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 27(12):1267–1274. doi: 10.1016/j.echo.2014.07.015 CrossRefGoogle Scholar
  64. 64.
    de Simone G, Galderisi M (2014) Allometric normalization of cardiac measures: producing better, but imperfect, accuracy. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 27(12):1275–1278. doi: 10.1016/j.echo.2014.10.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joseph Mahgerefteh
    • 1
    Email author
  • Jarrett Linder
    • 1
  • Ellen J. Silver
    • 1
  • Penelope Hazin
    • 1
  • Scott Ceresnak
    • 1
  • Daphne Hsu
    • 1
  • Leo Lopez
    • 1
  1. 1.Division of Pediatric Cardiology, Children’s Hospital at MontefioreAlbert Einstein College of MedicineBronxUSA

Personalised recommendations