Skip to main content

Advertisement

Log in

Parental Occupational Exposures to Endocrine Disruptors and the Risk of Simple Isolated Congenital Heart Defects

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

This study aims to explore the associations between parental occupational exposures to endocrine disruptors (EDs) and simple isolated congenital heart defects (CHDs). A case–control study with standardized data collection involving 761 children with isolated CHDs and 609 children without any congenital malformations was conducted in Sichuan Province of China from March in 2012 to August in 2013. An adjusted job exposure matrix was used for occupational EDs exposure assessment. Logistic regression analysis was performed to assess the associations between parental occupational EDs exposures and CHDs. Maternal age at births, maternal education level, gravity, parity, induced abortion, folic acid use, medication use, drinking capacity and area of residence periconceptionally were selected as confounding factors for mothers. For fathers, we selected the following confounding factors: paternal education level, smoking, drinking frequencies and drinking capacity periconceptionally. Maternal occupational exposures to phthalates are associated with perimembranous ventricular septal defect (PmVSD) (P = 0.001, adjusted OR 3.7, 95 % CI 1.7–8.0), patent ductus arteriosus (PDA) (P = 0.002, adjusted OR 3.8, 95 % CI 1.6–8.9), secundum atrial septal defect (s-ASD) (P = 0.008, adjusted OR 3.5, 95 % CI 1.4–8.7) and pulmonary valve stenosis (PS) (P = 0.035, adjusted OR 4.2, 95 % CI 1.1–16.0), to alkylphenolic compounds and PmVSD (P = 0.003, adjusted OR 2.2, 95 % CI 1.3–3.6), PDA (P = 0.005, adjusted OR 2.0, 95 % CI 1.1–3.5) and PS (P = 0.004, adjusted OR 3.8, 95 % CI 1.5–9.4), to heavy metals with PmVSD (P = 0.003, adjusted OR 7.3, 95 % CI 2.0–27.6) and s-ASD (P = 0.034, adjusted OR 6.5, 95 % CI 1.1–36.7). Paternal occupational exposures to phthalates are associated with PmVSD (P = 0.035, adjusted OR 1.6, 95 % CI 1.0–2.4) and PS (P = 0.026, adjusted OR 2.4, 95 % CI 1.1–5.2), to alkylphenolic compounds (P = 0.027, adjusted OR 1.5, 95 % CI 1.0–2.2) with PmVSD. In conclusion, parental occupational exposures to some specific EDs, in particular phthalates and alkylphenolic compounds, are associated with an increased risk of some CHD phenotypes. However, the findings need to be considered more circumspectly regarding a crude measure of exposure probabilities and small numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar-Garduno C, Lacasana M, Blanco-Munoz J, Borja-Aburto VH, Garcia AM (2010) Parental occupational exposure to organic solvents and anencephaly in Mexico. Occup Environ Med 67:32–37

    Article  CAS  PubMed  Google Scholar 

  2. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  3. Bian Q, Wang X (2004) Toxic effect and mechanism of alkyl-phenol compounds on reproduction and development. Wei Sheng Yan Jiu 33:357–360

    CAS  PubMed  Google Scholar 

  4. Brouwers MM, van Tongeren M, Hirst AA, Bretveld RW, Roeleveld N (2009) Occupational exposure to potential endocrine disruptors: further development of a job exposure matrix. Occup Environ Med 66:607–614

    Article  CAS  PubMed  Google Scholar 

  5. Burdorf A, Brand T, Jaddoe VW, Hofman A, Mackenbach JP, Steegers EA (2011) The effects of work-related maternal risk factors on time to pregnancy, preterm birth and birth weight: the generation R study. Occup Environ Med 68:197–204

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Chen M, Xu B, Tang R, Han X, Qin Y et al (2013) Parental phenols exposure and spontaneous abortion in Chinese population residing in the middle and lower reaches of the Yangtze River. Chemosphere 93:217–222

    Article  CAS  PubMed  Google Scholar 

  7. Chevrier C, Petit C, Philippat C, Mortamais M, Slama R, Rouget F et al (2012) Maternal urinary phthalates and phenols and male genital anomalies. Epidemiology 23:353–356

    Article  PubMed  Google Scholar 

  8. Ching YH, Ghosh TK, Cross SJ, Packham EA, Honeyman L, Loughna S et al (2005) Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet 37:423–428

    Article  CAS  PubMed  Google Scholar 

  9. Desrosiers TA, Lawson CC, Meyer RE, Richardson DB, Daniels JL, Waters MA et al (2012) Maternal occupational exposure to organic solvents during early pregnancy and risks of neural tube defects and orofacial clefts. Occup Environ Med 69:493–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Desrosiers TA, Herring AH, Shapira SK, Hooiveld M, Luben TJ, Herdt-Losavio ML et al (2012) Paternal occupation and birth defects: findings from the national birth defects prevention study. Occup Environ Med 69:534–542

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dolk H, Loane MA, Abramsky L, de Walle H, Garne E (2010) Birth prevalence of congenital heart disease. Epidemiology 21:275–277 (author reply 277)

    Article  PubMed  Google Scholar 

  12. England J, Loughna S (2013) Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci 70:1221–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fear NT, Hey K, Vincent T, Murphy M (2007) Paternal occupation and neural tube defects: a case–control study based on the Oxford record linkage study register. Paediatr Perinat Epidemiol 21:163–168

    Article  PubMed  Google Scholar 

  14. Fernandez MF, Olmos B, Granada A, Lopez-Espinosa MJ, Molina-Molina JM, Fernandez JM et al (2007) Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case–control study. Environ Health Perspect 115(Suppl 1):8–14

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gao L, Li Y, Pei X, Chen X (2003) Effects of Di(2-ethylhexyl) phthalate(DEHP) on mouse embryos development in vitro. Wei Sheng Yan Jiu 32:198–200

    CAS  PubMed  Google Scholar 

  16. Gaspari L, Paris F, Jandel C, Kalfa N, Orsini M, Daures JP et al (2011) Prenatal environmental risk factors for genital malformations in a population of 1442 French male newborns: a nested case–control study. Hum Reprod 26:3155–3162

    Article  PubMed  Google Scholar 

  17. Gilboa SM, Desrosiers TA, Lawson C, Lupo PJ, Riehle-Colarusso TJ, Stewart PA et al (2012) Association between maternal occupational exposure to organic solvents and congenital heart defects, national birth defects prevention study, 1997–2002. Occup Environ Med 69:628–635

    Article  PubMed  Google Scholar 

  18. Gillum N, Karabekian Z, Swift LM, Brown RP, Kay MW, Sarvazyan N (2009) Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicol Appl Pharmacol 236:25–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Grady R, Sathyanarayana S (2012) An update on phthalates and male reproductive development and function. Curr Urol Rep 13:307–310

    Article  PubMed  Google Scholar 

  20. Granados-Riveron JT, Ghosh TK, Pope M, Bu’Lock F, Thornborough C, Eason J et al (2010) Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet 19:4007–4016

    Article  CAS  PubMed  Google Scholar 

  21. Gray LE Jr, Ostby J, Furr J, Price M, Veeramachaneni DN, Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58:350–365

    Article  CAS  PubMed  Google Scholar 

  22. Gregory M, Lacroix A, Haddad S, Devine P, Charbonneau M, Tardif R et al (2009) Effects of chronic exposure to octylphenol on the male rat reproductive system. J Toxicol Environ Health A 72:1553–1560

    Article  CAS  PubMed  Google Scholar 

  23. Guida V, Ferese R, Rocchetti M, Bonetti M, Sarkozy A, Cecchetti S et al (2013) A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot. Eur J Hum Genet 21:69–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Howdeshell KL, Rider CV, Wilson VS, Gray LE Jr (2008) Mechanisms of action of phthalate esters, individually and in combination, to induce abnormal reproductive development in male laboratory rats. Environ Res 108:168–176

    Article  CAS  PubMed  Google Scholar 

  25. Huang GY, Xie LJ, Linask KL, Zhang C, Zhao XQ, Yang Y et al (2011) Evaluating the role of connexin43 in congenital heart disease: screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models. J Cardiovasc Dis Res 2:206–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kishi R, Sata F, Yoshioka E, Ban S, Sasaki S, Konishi K et al (2008) Exploiting gene-environment interaction to detect adverse health effects of environmental chemicals on the next generation. Basic Clin Pharmacol Toxicol 102:191–203

    Article  CAS  PubMed  Google Scholar 

  27. Kopf PG, Walker MK (2009) Overview of developmental heart defects by dioxins, PCBs, and pesticides. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:276–285

    Article  CAS  PubMed  Google Scholar 

  28. Lacasana M, Vazquez-Grameix H, Borja-Aburto VH, Blanco-Munoz J, Romieu I, Aguilar-Garduno C et al (2006) Maternal and paternal occupational exposure to agricultural work and the risk of anencephaly. Occup Environ Med 63:649–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lawson CC, Schnorr TM, Whelan EA, Deddens JA, Dankovic DA, Piacitelli LA et al (2004) Paternal occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and birth outcomes of offspring: birth weight, preterm delivery, and birth defects. Environ Health Perspect 112:1403–1408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. LeBlanc GA, Mu X, Rider CV (2000) Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ Health Perspect 108:1133–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lee PC (1998) Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endocrine 9:105–111

    Article  CAS  PubMed  Google Scholar 

  32. Lin S, Herdt-Losavio ML, Chapman BR, Munsie JP, Olshan AF, Druschel CM (2013) Maternal occupation and the risk of major birth defects: a follow-up analysis from the national birth defects prevention study. Int J Hyg Environ Health 216:317–323

    Article  PubMed  Google Scholar 

  33. Liu XQ, Mai JZ, Gao XM, Wu Y, Nie ZQ, Ou YQ et al (2013) Current prevalence rate of congenital heart disease in 12 month-old and younger infants among four regions of Guangdong province. Zhonghua Xin Xue Guan Bing Za Zhi 41:337–340

    PubMed  Google Scholar 

  34. Lupo PJ, Symanski E, Langlois PH, Lawson CC, Malik S, Gilboa SM et al (2012) Maternal occupational exposure to polycyclic aromatic hydrocarbons and congenital heart defects among offspring in the national birth defects prevention study. Birth Defects Res A Clin Mol Teratol 94:875–881

    Article  CAS  PubMed  Google Scholar 

  35. Lyche JL, Gutleb AC, Bergman A, Eriksen GS, Murk AJ, Ropstad E et al (2009) Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health B Crit Rev 12:225–249

    Article  CAS  PubMed  Google Scholar 

  36. Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegardh J et al (2008) Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 17:256–265

    Article  CAS  PubMed  Google Scholar 

  37. Morales-Suarez-Varela M, Kaerlev L, Zhu JL, Llopis-Gonzalez A, Gimeno-Clemente N, Nohr EA et al (2010) Risk of infection and adverse outcomes among pregnant working women in selected occupational groups: a study in the Danish national birth cohort. Environ Health 9:70

    Article  PubMed Central  PubMed  Google Scholar 

  38. Nagao T, Wada K, Marumo H, Yoshimura S, Ono H (2001) Reproductive effects of nonylphenol in rats after gavage administration: a two-generation study. Reprod Toxicol 15:293–315

    Article  CAS  PubMed  Google Scholar 

  39. Nugteren JJ, Snijder CA, Hofman A, Jaddoe VW, Steegers EA, Burdorf A (2012) Work-related maternal risk factors and the risk of pregnancy induced hypertension and preeclampsia during pregnancy. The generation R study. PLoS One 7:e39263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ormond G, Nieuwenhuijsen MJ, Nelson P, Toledano MB, Iszatt N, Geneletti S et al (2009) Endocrine disruptors in the workplace, hair spray, folate supplementation, and risk of hypospadias: case–control study. Environ Health Perspect 117:303–307

    Article  PubMed Central  PubMed  Google Scholar 

  41. Patel SS, Burns TL (2013) Nongenetic risk factors and congenital heart defects. Pediatr Cardiol 34:1535–1555

    Article  PubMed  Google Scholar 

  42. Peng YS, Ding HC, Lin YT, Syu JP, Chen Y, Wang SM (2012) Uremic toxin p-cresol induces disassembly of gap junctions of cardiomyocytes. Toxicology 302:11–17

    Article  CAS  PubMed  Google Scholar 

  43. Peng YS, Lin YT, Wang SD, Hung KY, Chen Y, Wang SM (2013) P-cresol induces disruption of cardiomyocyte adherens junctions. Toxicology 306:176–184

    Article  CAS  PubMed  Google Scholar 

  44. Phillips KP, Tanphaichitr N (2008) Human exposure to endocrine disrupters and semen quality. J Toxicol Environ Health B Crit Rev 11:188–220

    Article  CAS  PubMed  Google Scholar 

  45. Pierik FH, Burdorf A, Deddens JA, Juttmann RE, Weber RF (2004) Maternal and paternal risk factors for cryptorchidism and hypospadias: a case–control study in newborn boys. Environ Health Perspect 112:1570–1576

    Article  PubMed Central  PubMed  Google Scholar 

  46. Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E et al (2007) Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:3015–3038

    Article  PubMed  Google Scholar 

  47. Posch MG, Waldmuller S, Muller M, Scheffold T, Fournier D, Andrade-Navarro MA et al (2011) Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS ONE 6:e28872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Posnack NG, Lee NH, Brown R, Sarvazyan N (2011) Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology 279:54–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N (2012) Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ Health Perspect 120:1243–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Rutland C, Warner L, Thorpe A, Alibhai A, Robinson T, Shaw B et al (2009) Knockdown of alpha myosin heavy chain disrupts the cytoskeleton and leads to multiple defects during chick cardiogenesis. J Anat 214:905–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rutland CS, Polo-Parada L, Ehler E, Alibhai A, Thorpe A, Suren S et al (2011) Knockdown of embryonic myosin heavy chain reveals an essential role in the morphology and function of the developing heart. Development 138:3955–3966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Saillenfait AM, Gallissot F, Sabate JP (2009) Differential developmental toxicities of di-n-hexyl phthalate and dicyclohexyl phthalate administered orally to rats. J Appl Toxicol 29:510–521

    Article  CAS  PubMed  Google Scholar 

  53. Saillenfait AM, Gallissot F, Sabate JP, Remy A (2013) Prenatal developmental toxicity studies on diundecyl and ditridecyl phthalates in Sprague–Dawley rats. Reprod Toxicol 37:49–55

    Article  CAS  PubMed  Google Scholar 

  54. Salameh A, Blanke K, Daehnert I (2013) Role of connexins in human congenital heart disease: the chicken and egg problem. Front Pharmacol 4:70

    PubMed Central  PubMed  Google Scholar 

  55. Sharpe RM, Fisher JS, Millar MM, Jobling S, Sumpter JP (1995) Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect 103:1136–1143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Singh S, Li SS (2011) Phthalates: toxicogenomics and inferred human diseases. Genomics 97:148–157

    Article  CAS  PubMed  Google Scholar 

  57. Snijder CA, Vlot IJ, Burdorf A, Obermann-Borst SA, Helbing WA, Wildhagen MF et al (2012) Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod 27:1510–1517

    Article  CAS  PubMed  Google Scholar 

  58. Sultana N, Nag K, Hoshijima K, Laird DW, Kawakami A, Hirose S (2008) Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proc Natl Acad Sci USA 105:4763–4768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Thulstrup AM, Bonde JP (2006) Maternal occupational exposure and risk of specific birth defects. Occup Med 56:532–543

    Article  Google Scholar 

  60. Tu L, Li H, Zhang H, Li X, Lin J, Xiong C (2012) Birth defects data from surveillance hospitals in Hubei province, China, 200 l–2008. Iran J Public Health 41:20–25

    PubMed Central  PubMed  Google Scholar 

  61. van Dartel DA, Pennings JL, Hendriksen PJ, van Schooten FJ, Piersma AH (2009) Early gene expression changes during embryonic stem cell differentiation into cardiomyocytes and their modulation by monobutyl phthalate. Reprod Toxicol 27:93–102

    Article  PubMed  Google Scholar 

  62. Van Tongeren M, Nieuwenhuijsen MJ, Gardiner K, Armstrong B, Vrijheid M, Dolk H et al (2002) A job-exposure matrix for potential endocrine-disrupting chemicals developed for a study into the association between maternal occupational exposure and hypospadias. Ann Occup Hyg 46:465–477

    Article  PubMed  Google Scholar 

  63. Wang X, Shang LX, Zhang Q, Xu XD, Huo XX (2011) Study on the effect of di-(2-ethylhexyl) phthalate on pregnant rats and the protection of zinc against it in pregnancy. Zhonghua Fu Chan Ke Za Zhi 46:928–930

    CAS  PubMed  Google Scholar 

  64. Waterman SJ, Ambroso JL, Keller LH, Trimmer GW, Nikiforov AI, Harris SB (1999) Developmental toxicity of di-isodecyl and di-isononyl phthalates in rats. Reprod Toxicol 13:131–136

    Article  CAS  PubMed  Google Scholar 

  65. Wei Z, Song L, Wei J, Chen T, Chen J, Lin Y et al (2012) Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol Lett 212:212–221

    Article  CAS  PubMed  Google Scholar 

  66. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    CAS  PubMed  Google Scholar 

  67. Zhou B (2002) Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Zhonghua Liu Xing Bing Xue Za Zhi 23:5–10

    PubMed  Google Scholar 

  68. Zhu YJ, Jiang JT, Ma L, Zhang J, Hong Y, Liao K et al (2009) Molecular and toxicologic research in newborn hypospadiac male rats following in utero exposure to di-n-butyl phthalate (DBP). Toxicology 260:120–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the National Science Fund of China (Grant Nos. 81270226 and 81070136).

Conflict of interest

The authors declare that there are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaiyu Zhou or Yimin Hua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhan, Y., Wang, F. et al. Parental Occupational Exposures to Endocrine Disruptors and the Risk of Simple Isolated Congenital Heart Defects. Pediatr Cardiol 36, 1024–1037 (2015). https://doi.org/10.1007/s00246-015-1116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-015-1116-6

Keywords

Navigation