Skip to main content
Log in

Quantification and Significance of Diffuse Myocardial Fibrosis and Diastolic Dysfunction in Childhood Hypertrophic Cardiomyopathy

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the presence of diffuse myocardial fibrosis in children and adolescents with hypertrophic cardiomyopathy (HCM) and to assess associations with echocardiographic and clinical parameters of disease. While a common end point in adults with HCM, it is unclear whether diffuse myocardial fibrosis occurs early in the disease. Cardiac magnetic resonance (CMR) estimation of myocardial post-contrast longitudinal relaxation time (T1) is an increasingly used method to estimate diffuse fibrosis. T1 measurements were taken using standard multi-breath-hold spoiled gradient echo phase-sensitive inversion-recovery CMR before and 15 min after the injection of gadolinium. The tissue–blood partition coefficient was calculated as a function of the ratio of T1 change of myocardium compared with blood. An echocardiogram and blood brain natriuretic peptide (BNP) levels were obtained on the day of the CMR. Twelve controls (mean age 12.8 years; 7 male) and 28 patients with HCM (mean age 12.8 years; 21 male) participated. The partition coefficient for both septal (0.27 ± 0.17 vs. 0.13 ± 0.09; p = 0.03) and lateral walls (0.22 ± 0.09 vs. 0.07 ± 0.10; p < 0.001) was increased in patients compared with controls. Eight patients had overt areas of late gadolinium enhancement (LGE). These patients did not show increased partition coefficient compared with those without LGE (0.27 ± 0.15 vs. 0.27 ± 0.19 and 0.22 ± 0.09 vs. 0.22 ± 0.09; p = 0.95 and 0.98, respectively). However, patients who were symptomatic (dyspnea, arrhythmia and/or chest pain) had higher lateral wall partition coefficient than asymptomatic HCM patients (0.27 ± 0.08 vs. 0.17 ± 0.08; p = 0.006). Similarly, patients with raised BNP (>100 pg/ml) had raised lateral wall coefficients (0.27 ± 0.07 vs. 0.20 ± 0.07; p = 0.03), as did those with traditional risk factors for sudden death (0.27 ± 0.06 vs. 0.18 ± 0.08; p = 0.007). Diffuse fibrosis, measured by the partition coefficient technique, is demonstrable in children and adolescents with HCM. Markers of fibrosis show an association with symptoms and raised serum BNP. Further study of the prognostic implication of this technique in young patients with HCM is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HCM:

Hypertrophic cardiomyopathy

CMR:

Cardiac magnetic resonance

T1:

Longitudinal relaxation time

BNP:

Brain natriuretic peptide

LGE:

Late gadolinium enhancement

LV:

Left ventricle

E/A:

Mitral inflow early-to-late diastolic flow ratio

IVRT:

Isovolumic relaxation time

S/D:

Pulmonary venous systolic-to-diastolic peak velocity ratio

E′lat:

Mitral lateral early diastolic tissue velocities

E′med:

Septal peak early diastolic tissue velocities

NYHA:

New York Heart Association

References

  1. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, Nassenstein K, Schlosser T, Sabin GV, Sechtem U, Mahrholdt H (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):875–887. doi:10.1016/j.jacc.2010.05.007

    Article  PubMed  Google Scholar 

  2. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ (2009) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19. doi:10.1186/1532-429X-11-19

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB (2013) Saturation recovery single-shot acquisition (SASHA) for myocardial T mapping. Magn Reson Med. doi:10.1002/mrm.24878

    Google Scholar 

  4. Dini FL, Michelassi C, Micheli G, Rovai D (2000) Prognostic value of pulmonary venous flow Doppler signal in left ventricular dysfunction: contribution of the difference in duration of pulmonary venous and mitral flow at atrial contraction. J Am Coll Cardiol 36(4):1295–1302

    Article  CAS  PubMed  Google Scholar 

  5. Dragulescu A, Mertens L, Friedberg MK (2013) Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging 6(2):254–261. doi:10.1161/CIRCIMAGING.112.000175

    Article  PubMed  Google Scholar 

  6. Ellims AH, Iles LM, Ling LH, Hare JL, Kaye DM, Taylor AJ (2012) Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson 14:76. doi:10.1186/1532-429X-14-76

    Article  PubMed Central  PubMed  Google Scholar 

  7. Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 218(3):703–710

    Article  CAS  PubMed  Google Scholar 

  8. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144. doi:10.1161/CIRCULATIONAHA.109.930636

    Article  PubMed  Google Scholar 

  9. Geske JB, Sorajja P, Nishimura RA, Ommen SR (2007) Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 116(23):2702–2708. doi:10.1161/CIRCULATIONAHA.107.698985

    Article  PubMed  Google Scholar 

  10. Geske JB, McKie PM, Ommen SR, Sorajja P (2013) B-type natriuretic peptide and survival in hypertrophic cardiomyopathy. J Am Coll Cardiol. doi:10.1016/j.jacc.2013.04.004

    Google Scholar 

  11. Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5(4):370–377. doi:10.1016/j.jcmg.2011.11.021

    Article  PubMed  Google Scholar 

  12. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52(19):1574–1580. doi:10.1016/j.jacc.2008.06.049

    Article  PubMed  Google Scholar 

  13. Kaski JP, Tome-Esteban MT, Mead-Regan S, Pantazis A, Marek J, Deanfield JE, McKenna WJ, Elliott PM (2008) B-type natriuretic peptide predicts disease severity in children with hypertrophic cardiomyopathy. Heart 94(10):1307–1311. doi:10.1136/hrt.2007.126748

    Article  CAS  PubMed  Google Scholar 

  14. Kato TS, Noda A, Izawa H, Yamada A, Obata K, Nagata K, Iwase M, Murohara T, Yokota M (2004) Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 110(25):3808–3814. doi:10.1161/01.CIR.0000150334.69355.00

    Article  PubMed  Google Scholar 

  15. Liu CY, Liu YC, Wu C, Armstrong A, Volpe GJ, van der Geest RJ, Liu Y, Hundley WG, Gomes AS, Liu S, Nacif M, Bluemke DA, Lima JA (2013) Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 62(14):1280–1287. doi:10.1016/j.jacc.2013.05.078

    Article  PubMed  Google Scholar 

  16. Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251

    Article  CAS  Google Scholar 

  17. Maki S, Ikeda H, Muro A, Yoshida N, Shibata A, Koga Y, Imaizumi T (1998) Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol 82(6):774–778

    Article  CAS  PubMed  Google Scholar 

  18. Maron BJ, Tholakanahalli VN, Zenovich AG, Casey SA, Duprez D, Aeppli DM, Cohn JN (2004) Usefulness of B-type natriuretic peptide assay in the assessment of symptomatic state in hypertrophic cardiomyopathy. Circulation 109(8):984–989. doi:10.1161/01.CIR.0000117098.75727.D8

    Article  CAS  PubMed  Google Scholar 

  19. Nagakura T, Takeuchi M, Yoshitani H, Nakai H, Nishikage T, Kokumai M, Otani S, Yoshiyama M, Yoshikawa J (2007) Hypertrophic cardiomyopathy is associated with more severe left ventricular dyssynchrony than is hypertensive left ventricular hypertrophy. Echocardiography 24(7):677–684. doi:10.1111/j.1540-8175.2007.00458.x

    Article  PubMed  Google Scholar 

  20. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133. doi:10.1016/j.echo.2008.11.023

    Article  PubMed  Google Scholar 

  21. Nishimura RA, Appleton CP, Redfield MM, Ilstrup DM, Holmes DR Jr, Tajik AJ (1996) Noninvasive doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol 28(5):1226–1233. doi:10.1016/S0735-1097(96)00315-4

    Article  CAS  PubMed  Google Scholar 

  22. Ogino K, Ogura K, Kinugawa T, Osaki S, Kato M, Furuse Y, Kinugasa Y, Tomikura Y, Igawa O, Hisatome I, Shigemasa C (2004) Neurohumoral profiles in patients with hypertrophic cardiomyopathy: differences to hypertensive left ventricular hypertrophy. Circ J 68(5):444–450

    Article  PubMed  Google Scholar 

  23. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D, Sulaibeekh L, Chandrasekaran B, Bucciarelli-Ducci C, Pasquale F, Cowie MR, McKenna WJ, Sheppard MN, Elliott PM, Pennell DJ, Prasad SK (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874. doi:10.1016/j.jacc.2010.05.010

    Article  PubMed  Google Scholar 

  24. Pieroni M, Bellocci F, Sanna T, Verardo R, Ierardi C, Maseri A, Frustaci A, Crea F (2007) Increased brain natriuretic peptide secretion is a marker of disease progression in nonobstructive hypertrophic cardiomyopathy. J Card Fail 13(5):380–388. doi:10.1016/j.cardfail.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  25. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, Pastor A, Carr-White G, Razavi R, Schaeffter T, Nagel E (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6(4):475–484. doi:10.1016/j.jcmg.2012.08.019

    Article  PubMed  Google Scholar 

  26. Raman FS, Kawel-Boehm N, Gai N, Freed M, Han J, Liu CY, Lima JA, Bluemke DA, Liu S (2013) Modified look-locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners. J Cardiovasc Magn Reson 15:64. doi:10.1186/1532-429X-15-64

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rubinshtein R, Glockner JF, Ommen SR, Araoz PA, Ackerman MJ, Sorajja P, Bos JM, Tajik AJ, Valeti US, Nishimura RA, Gersh BJ (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3(1):51–58. doi:10.1161/circheartfailure.109.854026

    Article  PubMed  Google Scholar 

  28. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 47(6):1175–1181. doi:10.1016/j.jacc.2005.10.061

    Article  PubMed  Google Scholar 

  29. Sueyoshi E, Sakamoto I, Uetani M (2010) Contrast-enhanced myocardial inversion time at the null point for detection of left ventricular myocardial fibrosis in patients with dilated and hypertrophic cardiomyopathy: a pilot study. AJR Am J Roentgenol 194(4):W293–W298. doi:10.2214/AJR.09.3414

    Article  PubMed  Google Scholar 

  30. Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, Pagano JJ, Mackie AS, Thompson RB (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15(1):48. doi:10.1186/1532-429X-15-48

    Article  PubMed Central  PubMed  Google Scholar 

  31. Toro-Salazar OH, Gillan E, O’Loughlin MT, Burke GS, Ferranti J, Stainsby J, Liang B, Mazur W, Raman SV, Hor KN (2013) Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging 6(6):873–880. doi:10.1161/CIRCIMAGING.113.000798

    Article  PubMed  Google Scholar 

  32. Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ (2000) Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84(5):476–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, Hausenloy DJ, Sheikh AM, Hawkins PN, Moon JC (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6(9):955–962. doi:10.1016/j.jcmg.2013.01.011

    Article  PubMed  Google Scholar 

  34. Wigle ED, Rakowski H, Kimball BP, Williams WG (1995) Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation 92(7):1680–1692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Andreas Greiser is an employee of Siemens Healthcare, Erlangen, Germany. All the other authors were not consultants or employees for Siemens Healthcare and had control of inclusion of any data and information that might present a conflict of interest for Andreas Greiser. We thank Judith Wilson and Sandra Aiello for their help with the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarique Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Dragulescu, A., Benson, L. et al. Quantification and Significance of Diffuse Myocardial Fibrosis and Diastolic Dysfunction in Childhood Hypertrophic Cardiomyopathy. Pediatr Cardiol 36, 970–978 (2015). https://doi.org/10.1007/s00246-015-1107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-015-1107-7

Keywords

Navigation