Skip to main content
Log in

Identification of Differently Expressed Genes and Small Molecule Drugs for Tetralogy of Fallot by Bioinformatics Strategy

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

This study aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for Tetralogy of Fallot (TOF). The gene expression profile of TOF GSE26125 was downloaded from the Gene Expression Omnibus database, including 16 idiopathic TOF samples and five healthy controls. The DEGs were identified by the Limma package in R language and underwent functional enrichment analysis via Database for Annotation, Visualization and Integrated Discovery tools. A protein–protein interaction (PPI) network of DEGs was then constructed and the significant clusters were selected for functional analysis. In addition, the DEGs were mapped to the connectivity map (CMap) database to identify potential small-molecule drugs. As a result, a total of 499 DEGs were selected between TOF and healthy controls. Meanwhile, the functional changes of DEGs related to TOF were mainly associated with cellular respiration and energy metabolism. Furthermore, in the PPI network, two clusters were identified via cluster 1 analysis. And only cluster 1 was significantly enriched into gene ontology terms, including respiratory chain, electron transport chain, and oxidation reduction. The hub gene of cluster 1 was NDUFAB1. Additionally, small molecules, such as harmine, solanine, and testosterone, may have the potential to repair the disordered metabolic pathways of TOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Apitz C, Webb GD, Redington AN (2009) Tetralogy of fallot. Lancet 374:1462–1471

    Article  CAS  PubMed  Google Scholar 

  2. Bailliard F, Anderson RH (2009) Tetralogy of fallot. Orphanet J Rare Dis 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bao B, Wang Y, Hu H et al (2013) Karyotypic and molecular genetic changes associated with fetal cardiovascular abnormalities: results of a retrospective 4-year ultrasonic diagnosis study. Int J Biol Sci 9:463

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bassareo PP, Mercuro G (2013) QRS complex enlargement as a predictor of ventricular arrhythmias in patients affected by surgically treated Tetralogy of Fallot: a comprehensive literature review and historical overview. ISRN Cardiol 2013:782508

    PubMed Central  PubMed  Google Scholar 

  5. Bittel DC, Butler MG, Kibiryeva N, Marshall JA, Chen J, Lofland GK, O’brien JE Jr (2011) Gene expression in cardiac tissues from infants with idiopathic conotruncal defects. BMC Med Genomics 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  6. Da Huang W, Sherman BT, Tan Q et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dai F, Chen Y, Song Y et al (2012) A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PloS One 7:e52162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Diboun I, Wernisch L, Orengo CA, Koltzenburg M (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 7:252

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fujita A, Sato JR, Rodrigues Lde O, Ferreira CE, Sogayar MC (2006) Evaluating different methods of microarray data normalization. BMC Bioinform 7:469

    Article  Google Scholar 

  10. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  CAS  PubMed  Google Scholar 

  11. Hare JE, Baird JD, Duignan P, Saunders J, Floetenmeyer R, Basrur PK (1994) XY gonadal dysgenesis and tetralogy of Fallot in an Angus calf. Can Vet J 35:510

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Hulsegge I, Kommadath A, Smits MA (2009) Globaltest and GOEAST: two different approaches for gene ontology analysis. BMC Proc 3(Suppl 4):S10

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101; discussion 101–103, 119–128, 244–152

  14. Kirk EP, Sunde M, Costa MW et al (2007) Mutations in cardiac t-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Komurcu-Bayrak E, Ozsait B, Erginel-Unaltuna N (2012) Isolation and analysis of genes mainly expressed in adult mouse heart using subtractive hybridization cDNA library. Mol Biol Rep 39:8065–8074

    Article  CAS  PubMed  Google Scholar 

  16. Kong B, Liu YL, Lü XD (2009) Decreased expression of neurotrophic tyrosine receptor kinase 3 is associated with the outflow tract defect of human tetralogy of Fallot. Chin Med J (Engl) 122(2):153–157

    Google Scholar 

  17. Lamb J (2007) The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  CAS  PubMed  Google Scholar 

  18. Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  19. Liao YY, Lee TS, Lin YM (2006) A Fisher exact test will be more proper. Radiology 239:300–301; author reply 301

    Google Scholar 

  20. Michielon G, Marino B, Formigari R et al (2006) Genetic syndromes and outcome after surgical correction of tetralogy of Fallot. Ann Thorac Surg 81:968–975

    Article  PubMed  Google Scholar 

  21. Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, Bitar F (2006) A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat 27:293–294

    Article  PubMed  Google Scholar 

  22. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9:471–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Romero J, Mejia-Lopez E, Manrique C, Lucariello R (2013) Arrhythmogenic right ventricular cardiomyopathy (ARVC/D): a systematic literature review. Clin Med Insights Cardiol 7:97–114

    PubMed Central  PubMed  Google Scholar 

  24. Salazar M, Consoli F, Villegas V et al (2011) Search of somatic GATA4 and NKX2.5 gene mutations in sporadic septal heart defects. Eur J Med Genet 54:306–309

    Article  PubMed  Google Scholar 

  25. Sheng W, Wang H, Ma X et al (2012) LINE-1 methylation status and its association with tetralogy of fallot in infants. BMC Med Genomics 5:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shinde SB, Save VC, Patil ND, Mishra KP, Tendolkar AG (2007) Impairment of mitochondrial respiratory chain enzyme activities in tetralogy of Fallot. Clin Chim Acta 377:138–143

    Article  CAS  PubMed  Google Scholar 

  27. Shinebourne E, Anderson R (2002) Fallot’s tetralogy. Pediatr Cardiol 2:1213–1250

    Google Scholar 

  28. Silversides CK, Lionel AC, Costain G et al (2012) Rare copy number variations in adults with tetralogy of fallot implicate novel risk gene pathways. PLoS Genet 8:e1002843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Steeds RP, Oakley D (2004) Predicting late sudden death from ventricular arrhythmia in adults following surgical repair of tetralogy of Fallot. QJM 97:7–13

    Article  CAS  PubMed  Google Scholar 

  31. Triepels R, Smeitink J, Loeffen J, Smeets R, Buskens C, Trijbels F, Van Den Heuvel L (1999) The human nuclear-encoded acyl carrier subunit (NDUFAB1) of the mitochondrial complex I in human pathology. J Inherit Metab Dis 22:163–173

    Article  CAS  PubMed  Google Scholar 

  32. Triepels R, Van Den Heuvel L, Trijbels J, Smeitink J (2001) Respiratory chain complex I deficiency. Am J Med Genet 106:37–45

    Article  CAS  PubMed  Google Scholar 

  33. Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525

    Article  CAS  PubMed  Google Scholar 

  34. Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261

    Article  Google Scholar 

  35. Webber SA, Hatchwell E, Barber JC et al (1996) Importance of microdeletions of chromosomal region 22q11 as a cause of selected malformations of the ventricular outflow tracts and aortic arch: a three-year prospective study. J Pediatr 129:26–32

    Article  CAS  PubMed  Google Scholar 

  36. Wei D, Bao H, Liu X-Y et al (2013) GATA5 loss-of-function mutations underlie Tetralogy of Fallot. Int J Med Sci 10:34–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Woolley D, Shaw E (1954) Some neurophysiological aspects of serotonin. Br Med J 2:122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yang D, Li J, Yuan Z (2013) Gene expression analysis in cardiac tissues from infants identifies candidate agents for tetralogy of fallot. Pediatr Cardiol 34(7):1637–1644

    Article  PubMed  Google Scholar 

  39. Yu M, Xiang F, Beyer RP, Farin FM, Bammler TK, Chin MT (2010) Transcription factor CHF1/Hey2 regulates specific pathways in serum stimulated primary cardiac myocytes: implications for cardiac hypertrophy. Curr Genomics 11:287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhang X, Azhar G, Helms S, Zhong Y, Wei JY (2008) Identification of a subunit of NADH-dehydrogenase as a p49/STRAP-binding protein. BMC Cell Biol 9:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhang R, Shen L, Xie Y, Gen L, Li X, Ji Q (2013) Effect of morphine-induced postconditioning in corrections of tetralogy of fallot. J Cardiothorac Surg 8:76

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the national natural science foundation of China (Grant No. 81100119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Q., Chen, XT., Xiao, YB. et al. Identification of Differently Expressed Genes and Small Molecule Drugs for Tetralogy of Fallot by Bioinformatics Strategy. Pediatr Cardiol 35, 863–869 (2014). https://doi.org/10.1007/s00246-014-0868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-0868-8

Keywords

Navigation