Skip to main content

Advertisement

Log in

Increased Regional Deformation of the Left Ventricle in Normal Children With Increased Body Mass Index: Implications for Future Cardiovascular Health

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The prevalence of obesity continues to increase in the developing world. The effects of obesity on the cardiovascular system include changes in systolic and diastolic function. More recently obesity has been linked with impairment of longitudinal myocardial deformation properties in children. We sought to determine the effect of increased body mass index (BMI) on cardiac deformation in a group of children taking part in the population-based Southampton Women’s Survey to detect early cardiovascular changes associated with increasing BMI before established obesity. Sixty-eight children at a mean age of 9.4 years old underwent assessment of longitudinal myocardial deformation in the basal septal segment of the left ventricle (LV) using two-dimensional speckle tracking echocardiography. Parameters of afterload and preload, which may influence deformation, were determined from cardiac magnetic resonance imaging. BMI was determined from the child’s height and weight at the time of echocardiogram. Greater pediatric BMI was associated with greater longitudinal myocardial deformation or strain in the basal septal segment of the LV (β = 1.6, p < 0.001); however, this was not related to contractility or strain rate in this part of the heart (β = 0.001, p = 0.92). The end-diastolic volume of the LV increased with increasing BMI (β = 3.93, p < 0.01). In young children, regional deformation in the LV increases with increasing BMI, whilst normal contractility is maintained. This effect may be explained by the increased preload of the LV associated with increased somatic growth. The long-term implications of this altered physiology need to be followed-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adda J, Mielot C, Giorgi R, Cransac F, Zirphile X, Donal E et al (2011) Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ Cardiovasc Imaging 1:27–35

    Google Scholar 

  2. Alpert MA, Lambert CR, Panayiotou H, Terry BE, Cohen MV, Massey CV et al (1995) Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol 76(16):1194–1197

    Article  CAS  PubMed  Google Scholar 

  3. Baltabaeva A, Marciniak M, Bijnens B, Moggridge J, He FJ, Antonios TF et al (2008) Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur J Echocardiogr 9(4):501–508

    PubMed  Google Scholar 

  4. Barbosa JA, Rodrigues AB, Mota CC, Barbosa MM, Simoes e Silva AC (2011) Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods. Vasc Health Risk Manag 7:287–295

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bussadori C, Oliveira P, Arcidiacono C, Saracino A, Nicolosi E, Negura D et al (2011) Right and left ventricular strain and strain rate in young adults before and after percutaneous atrial septal defect closure. Echocardiography 28(7):730–737

    Article  PubMed  Google Scholar 

  6. Cheung YF, Liang XC, Chan GC, Wong SJ, Ha SY (2010) Myocardial deformation in patients with beta-thalassemia major: a speckle tracking echocardiographic study. Echocardiography 27(3):253–259

    Article  PubMed  Google Scholar 

  7. Cheung YF, Hong WJ, Chan GC, Wong SJ, Ha SY (2010) Left ventricular myocardial deformation and mechanical dyssynchrony in children with normal ventricular shortening fraction after anthracycline therapy. Heart 96(14):1137–1141

    Article  PubMed  Google Scholar 

  8. Choi JO, Shin DH, Cho SW, Song YB, Kim JH, Kim YG et al (2008) Effect of preload on left ventricular longitudinal strain by 2D speckle tracking. Echocardiography 25(8):873–879

    Article  PubMed  Google Scholar 

  9. Danias PG, Tritos NA, Stuber M, Kissinger KV, Salton CJ, Manning WJ (2003) Cardiac structure and function in the obese: a cardiovascular magnetic resonance imaging study. J Cardiovasc Magn Reson 5(3):431–438

    Article  PubMed  Google Scholar 

  10. Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW (2011) Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity (Silver Spring) 19(1):128–133

    Article  Google Scholar 

  11. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M et al (2006) Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J 27(22):2689–2695

    Article  PubMed  Google Scholar 

  12. Dragulescu A, Mertens LL (2010) Developments in echocardiographic techniques for the evaluation of ventricular function in children. Arch Cardiovasc Dis 103(11–12):603–614

    Article  PubMed  Google Scholar 

  13. Friberg P, Allansdotter-Johnsson A, Ambring A, Ahl R, Arheden H, Framme J et al (2004) Increased left ventricular mass in obese adolescents. Eur Heart J 25(11):987–992

    Article  CAS  PubMed  Google Scholar 

  14. Friedberg MK, Mertens L (2009) Tissue velocities, strain, and strain rate for echocardiographic assessment of ventricular function in congenital heart disease. Eur J Echocardiogr 10(5):585–593

    Article  PubMed  Google Scholar 

  15. Gong HP, Tan HW, Fang NN, Song T, Li SH, Zhong M et al (2009) Impaired left ventricular systolic and diastolic function in patients with metabolic syndrome as assessed by strain and strain rate imaging. Diabetes Res Clin Pract 83(3):300–307

    Article  PubMed  Google Scholar 

  16. Goran M, Fields DA, Hunter GR, Herd SL, Weinsier RL (2000) Total body fat does not influence maximal aerobic capacity. Int J Obesity Relat Metab Disord 24(7):841–848

    Article  CAS  Google Scholar 

  17. Ingul CB, Tjonna AE, Stolen TO, Stoylen A, Wisloff U (2010) Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch J Pediatr Adolesc Med 164(9):852–859

    Google Scholar 

  18. Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJ, Cooper C (2006) Cohort profile: the Southampton Women’s survey. Int J Epidemiol 35(1):42–48

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jackson CE, Shirodaria CC, Lee JM, Francis JM, Choudhury RP, Channon KM et al (2009) Reproducibility and accuracy of automated measurement for dynamic arterial lumen area by cardiovascular magnetic resonance. Int J Cardiovasc Imaging 25(8):797–808

    Article  PubMed  Google Scholar 

  20. Kamal HM, Atwa HA, Saleh OM, Mohamed FA (2011) Echocardiographic evaluation of cardiac structure and function in obese Egyptian adolescents. Cardiol Young 2:1–7

    Google Scholar 

  21. Koopman LP, McCrindle BW, Slorach C, Chahal N, Hui W, Sarkola T et al (2012) Interaction between myocardial and vascular changes in obese children: a pilot study. J Am Soc Echocardiogr 25(4):401–410.e1

    Article  PubMed  Google Scholar 

  22. Kosmala W, Plaksej R, Strotmann JM, Weigel C, Herrmann S, Niemann M et al (2008) Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study. J Am Soc Echocardiogr 21(12):1309–1317

    Article  PubMed  Google Scholar 

  23. Lorch SM, Sharkey A (2007) Myocardial velocity, strain, and strain rate abnormalities in healthy obese children. J Cardiometab Syndr 2(1):30–34

    Article  PubMed  Google Scholar 

  24. Mehta SK, Holliday C, Hayduk L, Wiersma L, Richards N, Younoszai A (2004) Comparison of myocardial function in children with body mass indexes >/=25 versus those <25 kg/m2. Am J Cardiol 93(12):1567–1569

    Article  PubMed  Google Scholar 

  25. Moiduddin N, Asoh K, Slorach C, Benson LN, Friedberg MK (2009) Effect of transcatheter pulmonary valve implantation on short-term right ventricular function as determined by two-dimensional speckle tracking strain and strain rate imaging. Am J Cardiol 104(6):862–867

    Article  PubMed  Google Scholar 

  26. Nakajima T, Fujioka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S (1985) Noninvasive study of left ventricular performance in obese patients: influence of duration of obesity. Circulation 71(3):481–486

    Article  CAS  PubMed  Google Scholar 

  27. Naylor L, Watts K, Sharpe J, Jones T, Davies E, Ramsay J et al (2006) Effect of resistance and circuit exercise training on left ventricular diastolic function in obese adolescents. Med Sci Sport Exerc 38(5):S41S–S414

    Google Scholar 

  28. Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J (2000) Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension 36(4):501–505

    Article  CAS  PubMed  Google Scholar 

  29. Pascual M, Pascual DA, Soria F, Vicente T, Hernandez AM, Tebar FJ et al (2003) Effects of isolated obesity on systolic and diastolic left ventricular function. Heart 89(10):1152–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109(18):2191–2196

    Article  PubMed  Google Scholar 

  31. Pieper GM, Shah A, Harmann L, Cooley BC, Ionova IA, Migrino RQ (2010) Speckle-tracking 2-dimensional strain echocardiography: a new noninvasive imaging tool to evaluate acute rejection in cardiac transplantation. J Heart Lung Transplant 29(9):1039–1046

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rabbia F, Silke B, Conterno A, Grosso T, De Vito B, Rabbone I et al (2003) Assessment of cardiac autonomic modulation during adolescent obesity. Obesity Res 11(4):541–548

    Article  Google Scholar 

  33. Rowland TW (2007) Effect of obesity on cardiac function in children and adolescents: a review. J Sport Sci Med 6(3):319–326

    Google Scholar 

  34. Vidmar S, Carlin C, Hesketh K, Cole T (2004) Standardizing anthropometric measures in children and adolescents with new functions for egen. Stata J 4(1):50–55

    Google Scholar 

  35. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110(19):3081–3087

    Article  PubMed  Google Scholar 

  36. Yamawaki K, Tanaka H, Matsumoto K, Hiraishi M, Miyoshi T, Kaneko A et al (2012) Impact of left ventricular afterload on longitudinal dyssynchrony in patients with severe aortic stenosis and preserved ejection fraction. Circ J 76(3):744–751

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Black.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, D., Bryant, J., Peebles, C. et al. Increased Regional Deformation of the Left Ventricle in Normal Children With Increased Body Mass Index: Implications for Future Cardiovascular Health. Pediatr Cardiol 35, 315–322 (2014). https://doi.org/10.1007/s00246-013-0778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-013-0778-1

Keywords

Navigation