Skip to main content
Log in

Cardiomyopathy of Friedreich’s Ataxia: Use of Mouse Models to Understand Human Disease and Guide Therapeutic Development

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Friedreich’s ataxia is a multisystem disorder of mitochondrial function affecting primarily the heart and brain. Patients experience a severe cardiomyopathy that can progress to heart failure and death. Although the gene defect is known, the precise function of the deficient mitochondrial protein, frataxin, is not known and limits therapeutic development. Animal models have been valuable for understanding the basic events of this disease. A significant need exists to focus greater attention on the heart disease in Friedreich’s ataxia, to understand its long-term outcome, and to develop new therapeutic strategies using existing medications and approaches. This review discusses some key features of the cardiomyopathy in Friedreich’s ataxia and potential therapeutic developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alboliras ET, Shub C, Gomez MR, Edwards WD, Hagler DJ, Reeder GS, Seward JB, Tajik AJ (1986) Spectrum of cardiac involvement in Friedreich’s ataxia: clinical, electrocardiographic, and echocardiographic observations. Am J Cardiol 58:518–524

    Article  PubMed  CAS  Google Scholar 

  2. Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D, Pook M (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17:735–746

    Article  PubMed  CAS  Google Scholar 

  3. Begley DJ (1996) The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48:136–146

    Article  PubMed  CAS  Google Scholar 

  4. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, Sidi D, Thalabard JC, Munnich A, Cabantchik ZI (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  PubMed  CAS  Google Scholar 

  5. Brautigam CA, Chuang JL, Tomchick DR, Machius M, Chuang DT (2005) Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. J Mol Biol 350:543–552

    Article  PubMed  CAS  Google Scholar 

  6. Bunse M, Bit-Avragim N, Riefflin A, Perrot A, Schmidt O, Kreuz FR, Dietz R, Jung WI, Osterziel KJ (2003) Cardiac energetics correlates to myocardial hypertrophy in Friedreich’s ataxia. Ann Neurol 53:121–123

    Article  PubMed  CAS  Google Scholar 

  7. Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH, Chen J (2002) In vivo delivery of a bcl-xl fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci 22:5423–5431

    PubMed  CAS  Google Scholar 

  8. Casazza F, Morpurgo M (1996) The varying evolution of Friedreich’s ataxia cardiomyopathy. Am J Cardiol 77:895–898

    Article  PubMed  CAS  Google Scholar 

  9. Cavadini P, Adamec J, Taroni F, Gakh O, Isaya G (2000) Two-step processing of human frataxin by mitochondrial processing peptidase: precursor and intermediate forms are cleaved at different rates. J Biol Chem 275:41469–41475

    Article  PubMed  CAS  Google Scholar 

  10. Chakrapani A, Vellodi A, Robinson P, Jones S, Wraith JE (2010) Treatment of infantile Pompe disease with alglucosidase alpha: the UK experience. J Inherit Metab Dis 33:747–750

    Article  PubMed  CAS  Google Scholar 

  11. Child JS, Perloff JK, Bach PM, Wolfe AD, Perlman S, Kark RA (1986) Cardiac involvement in Friedreich’s ataxia: a clinical study of 75 patients. J Am Coll Cardiol 7:1370–1378

    Article  PubMed  CAS  Google Scholar 

  12. Condo I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R (2007) In vivo maturation of human frataxin. Hum Mol Genet 16:1534–1540

    Article  PubMed  CAS  Google Scholar 

  13. Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, Koenig M (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226

    Article  PubMed  CAS  Google Scholar 

  14. De Biase I, Rasmussen A, Endres D, Al-Mahdawi S, Monticelli A, Cocozza S, Pook M, Bidichandani SI (2007) Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann Neurol 61:55–60

    Article  PubMed  Google Scholar 

  15. Del Gaizo Moore V, Payne RM (2004) Transactivator of transcription fusion protein transduction causes membrane inversion. J Biol Chem 279:32541–32544

    Article  PubMed  CAS  Google Scholar 

  16. Del Gaizo V, Payne RM (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7:720–730

    Article  PubMed  CAS  Google Scholar 

  17. Del Gaizo-Moore V, MacKenzie JA, Payne RM (2003) Targeting proteins to mitochondria using TAT. Mol Genet Metab 80:170–180

    Article  Google Scholar 

  18. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278:31192–31201

    Article  PubMed  CAS  Google Scholar 

  19. Dutka DP, Donnelly JE, Palka P, Lange A, Nunez DJ, Nihoyannopoulos P (2000) Echocardiographic characterization of cardiomyopathy in Friedreich’s ataxia with tissue Doppler echocardiographically derived myocardial velocity gradients. Circulation 102:1276–1282

    PubMed  CAS  Google Scholar 

  20. Epplen C, Epplen JT, Frank G, Miterski B, Santos EJ, Schols L (1997) Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum Genet 99:834–836

    Article  PubMed  CAS  Google Scholar 

  21. Filla A, De Michele G, Marconi R, Bucci L, Carillo C, Castellano AE, Iorio L, Kniahynicki C, Rossi F, Campanella G (1992) Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J Neurol 239:351–353

    Article  PubMed  CAS  Google Scholar 

  22. Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, Cocozza S (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59:554–560

    PubMed  CAS  Google Scholar 

  23. Gacy AM, Goellner GM, Spiro C, Chen X, Gupta G, Bradbury EM, Dyer RB, Mikesell MJ, Yao JZ, Johnson AJ, Richter A, Melancon SB, McMurray CT (1998) GAA instability in Friedreich’s ataxia shares a common DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol Cell 1:583–593

    Article  PubMed  CAS  Google Scholar 

  24. Gaume B, Klaus C, Ungermann C, Guiard B, Neupert W, Brunner M (1998) Unfolding of preproteins upon import into mitochondria. EMBO J 17:6497–6507

    Article  PubMed  CAS  Google Scholar 

  25. Gillingham MB, Scott B, Elliott D, Harding CO (2006) Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Mol Genet Metab 89:58–63

    Article  PubMed  CAS  Google Scholar 

  26. Goker-Alpan O (2010) Optimal therapy in Gaucher disease. Ther Clin Risk Manag 6:315–323

    Article  PubMed  CAS  Google Scholar 

  27. Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA (2002) TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106:735–739

    PubMed  CAS  Google Scholar 

  28. Gustafsson AB, Gottlieb RA, Granville DJ (2005) TAT-mediated protein transduction: delivering biologically active proteins to the heart. Methods Mol Med 112:81–90

    PubMed  CAS  Google Scholar 

  29. Haas RH (2007) The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion 7(Suppl):S136–S145

    Article  PubMed  CAS  Google Scholar 

  30. Hanley A, Corrigan R, Mohammad S, MacMahon B (2010) Friedreich’s ataxia cardiomyopathy: case based discussion and management issues. Ir Med J 103:117–118

    PubMed  CAS  Google Scholar 

  31. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  PubMed  CAS  Google Scholar 

  32. Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C, Blamire AM, Manners D, Styles P, Schapira AH, Cooper JM (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62:621–626

    Article  PubMed  Google Scholar 

  33. Hawley RJ, Gottdiener JS (1986) Five-year follow-up of Friedreich’s ataxia cardiomyopathy. Arch Intern Med 146:483–488

    Article  PubMed  CAS  Google Scholar 

  34. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558

    Article  PubMed  CAS  Google Scholar 

  35. Hewer R (1969) The heart in Friedreich’s ataxia. Br Heart J 31:5–14

    Article  PubMed  CAS  Google Scholar 

  36. Huang ML, Becker EM, Whitnall M, Rahmanto YS, Ponka P, Richardson DR (2009) Elucidation of the mechanism of mitochondrial iron loading in Friedreich’s ataxia by analysis of a mouse mutant. Proc Natl Acad Sci USA 106:16381–16386

    Article  PubMed  Google Scholar 

  37. Isaya G (2007) Ironing out a therapy for Friedreich ataxia. Blood 110:1–2

    Article  CAS  Google Scholar 

  38. Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. Faseb J 17:1972–1974

    PubMed  CAS  Google Scholar 

  39. Jensen KD, Nori A, Tijerina M, Kopeckova P, Kopecek J (2003) Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. J Control Release 87:89–105

    Article  PubMed  CAS  Google Scholar 

  40. Kearney M, Orrell RW, Fahey M, Pandolfo M (2009) Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev: CD007791

  41. Kipps A, Alexander M, Colan SD, Gauvreau K, Smoot L, Crawford L, Darras BT, Blume ED (2009) The longitudinal course of cardiomyopathy in Friedreich’s ataxia during childhood. Pediatr Cardiol 30:306–310

    Article  PubMed  Google Scholar 

  42. Kosutic J, Zamurovic D (2005) High-dose beta-blocker hypertrophic cardiomyopathy therapy in a patient with Friedreich ataxia. Pediatr Cardiol 26:727–730

    Article  PubMed  CAS  Google Scholar 

  43. Leonard H, Forsyth R (2001) Friedreich’s ataxia presenting after cardiac transplantation. Arch Dis Child 84:167–168

    Article  PubMed  CAS  Google Scholar 

  44. Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    Article  PubMed  CAS  Google Scholar 

  45. Li K, Besse EK, Ha D, Kovtunovych G, Rouault TA (2008) Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17:2265–2273

    Article  PubMed  CAS  Google Scholar 

  46. Lim F, Palomo GM, Mauritz C, Gimenez-Cassina A, Illana B, Wandosell F, Diaz-Nido J (2007) Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 15:1072–1078

    PubMed  CAS  Google Scholar 

  47. Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 96:11492–11495

    Article  PubMed  CAS  Google Scholar 

  48. Lodi R, Rajagopalan B, Blamire AM, Cooper JM, Davies CH, Bradley JL, Styles P, Schapira AH (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res 52:111–119

    Article  PubMed  CAS  Google Scholar 

  49. Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol 67:941–947

    Article  PubMed  Google Scholar 

  50. Malo S, Latour Y, Cote M, Geoffroy G, Lemieux B, Barbeau A (1976) Electrocardiographic and vectocardiographic findings in Friedreich’s ataxia: the Canadian journal of neurological sciences. J Can Sci Neurol 3:323–328

    CAS  Google Scholar 

  51. Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di DS (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679

    PubMed  CAS  Google Scholar 

  52. Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, Koeppen AH (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5:257–267

    Article  PubMed  CAS  Google Scholar 

  53. Miranda CJ, Santos MM, Ohshima K, Smith J, Li L, Bunting M, Cossee M, Koenig M, Sequeiros J, Kaplan J, Pandolfo M (2002) Frataxin knockin mouse. FEBS Lett 512:291–297

    Article  PubMed  CAS  Google Scholar 

  54. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  PubMed  CAS  Google Scholar 

  55. Montermini L, Richter A, Morgan K, Justice CM, Julien D, Castellotti B, Mercier J, Poirier J, Capozzoli F, Bouchard JP, Lemieux B, Mathieu J, Vanasse M, Seni MH, Graham G, Andermann F, Andermann E, Melancon SB, Keats BJ, Di Donato S, Pandolfo M (1997) Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol 41:675–682

    Article  PubMed  CAS  Google Scholar 

  56. Palagi B, Picozzi R, Casazza F, Possa M, Magri G, Zoccarato O, Graziano E, Ferrari F, Morpurgo M (1988) Biventricular function in Friedreich’s ataxia: a radionuclide angiographic study. Br Heart J 59:692–695

    Article  PubMed  CAS  Google Scholar 

  57. Pandolfo M (2008) Friedreich ataxia. Arch Neurol 65:1296–1303

    Article  PubMed  Google Scholar 

  58. Patel PI, Isaya G (2001) Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am J Hum Genet 69:15–24

    Article  PubMed  CAS  Google Scholar 

  59. Pineda M, Arpa J, Montero R, Aracil A, Dominguez F, Galvan M, Mas A, Martorell L, Sierra C, Brandi N, Garcia-Arumi E, Rissech M, Velasco D, Costa JA, Artuch R (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 12:470–475

    Article  PubMed  Google Scholar 

  60. Pook MA, Al Mahdawi S, Carroll CJ, Cossee M, Puccio H, Lawrence L, Clark P, Lowrie MB, Bradley JL, Cooper JM, Koenig M, Chamberlain S (2001) Rescue of the Friedreich’s ataxia knockout mouse by human YAC transgenesis. Neurogenetics 3:185–193

    PubMed  CAS  Google Scholar 

  61. Puccio H, Koenig M (2000) Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 9:887–892

    Article  PubMed  CAS  Google Scholar 

  62. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect, and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186

    Article  PubMed  CAS  Google Scholar 

  63. Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 3:e1958

    Article  PubMed  Google Scholar 

  64. Rajagopalan B, Francis JM, Cooke F, Korlipara LV, Blamire AM, Schapira AH, Madan J, Neubauer S, Cooper JM (2010) Analysis of the factors influencing the cardiac phenotype in Friedreich’s ataxia. Mov Disord 25:846–852

    Article  PubMed  Google Scholar 

  65. Raman SV, Phatak K, Hoyle JC, Pennell ML, McCarthy B, Tran T, Prior TW, Olesik JW, Lutton A, Rankin C, Kissel JT, Al-Dahhak R (2010) Impaired myocardial perfusion reserve and fibrosis in Friedreich ataxia: a mitochondrial cardiomyopathy with metabolic syndrome. Eur Heart J (in press)

  66. Rapoport M, Lorberboum-Galski H (2009) TAT-based drug delivery system: new directions in protein delivery for new hopes? Expert Opin Drug Deliv 6:453–463

    Article  PubMed  CAS  Google Scholar 

  67. Rapoport M, Saada A, Elpeleg O, Lorberboum-Galski H (2008) TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Mol Ther 16:691–697

    Article  PubMed  CAS  Google Scholar 

  68. Rayapureddi JP, Tomamichel WJ, Walton ST, Payne RM (2010) TAT fusion protein transduction into isolated mitochondria is accelerated by sodium channel inhibitors. Biochemistry (in press)

  69. Reddy PL, Grewal RP (2007) Friedreich’s ataxia: a clinical and genetic analysis. Clin Neurol Neurosurg 109:200–202

    Article  PubMed  Google Scholar 

  70. Richardson DR (2003) Friedreich’s ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs 12:235–245

    Article  PubMed  CAS  Google Scholar 

  71. Richardson DR, Huang ML, Whitnall M, Becker EM, Ponka P, Rahmanto YS (2010) The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich’s ataxia. J Mol Med 88:323–329

    Article  PubMed  CAS  Google Scholar 

  72. Romeo G, Menozzi P, Ferlini A, Fadda S, Di Donato S, Uziel G, Lucci B, Capodaglio L, Filla A, Campanella G (1983) Incidence of Friedreich ataxia in Italy estimated from consanguineous marriages. Am J Hum Genet 35:523–529

    PubMed  CAS  Google Scholar 

  73. Rotig A, de LP, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  PubMed  CAS  Google Scholar 

  74. Rustin P, Rotig A, Munnich A, Sidi D (2002) Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res 36:467–469

    Article  PubMed  CAS  Google Scholar 

  75. Ryser HJ, Drummond I, Shen WC (1982) The cellular uptake of horseradish peroxidase and its poly(lysine) conjugate by cultured fibroblasts is qualitatively similar despite a 900-fold difference in rate. J Cell Physiol 113:167–178

    Article  PubMed  CAS  Google Scholar 

  76. Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD (2001) Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 276:27171–27177

    Article  PubMed  CAS  Google Scholar 

  77. Schmucker S, Argentini M, Carelle-Calmels N, Martelli A, Puccio H (2008) The in vivo mitochondrial two-step maturation of human frataxin. Hum Mol Genet 17:3521–3531

    Article  PubMed  CAS  Google Scholar 

  78. Schols L, Amoiridis G, Przuntek H, Frank G, Epplen JT, Epplen C (1997) Friedreich’s ataxia: revision of the phenotype according to molecular genetics. Brain 120:2131–2140

    Article  PubMed  Google Scholar 

  79. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  PubMed  CAS  Google Scholar 

  80. Sedlak TL, Chandavimol M, Straatman L (2004) Cardiac transplantation: a temporary solution for Friedreich’s ataxia-induced dilated cardiomyopathy. J Heart Lung Transplant 23:1304–1306

    Article  PubMed  Google Scholar 

  81. Segovia J, Alonso-Pulpon L, Burgos R, Silva L, Serrano S, Castedo E, Jimenez J, Fuentes R, Canas A, Ugarte J (2001) Heart transplantation in Friedreich’s ataxia and other neuromuscular diseases. J Heart Lung Transplant 20:169

    Article  PubMed  Google Scholar 

  82. Shaddy RE, Boucek MM, Hsu DT, Boucek RJ, Canter CE, Mahony L, Ross RD, Pahl E, Blume ED, Dodd DA, Rosenthal DN, Burr J, LaSalle B, Holubkov R, Lukas MA, Tani LY (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298:1171–1179

    Article  PubMed  Google Scholar 

  83. Shan Y, Napoli E, Cortopassi G (2007) Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 16:929–941

    Article  PubMed  CAS  Google Scholar 

  84. Skre H (1975) Friedreich’s ataxia in Western Norway. Clin Genet 7:287–298

    Article  PubMed  CAS  Google Scholar 

  85. Stemmler TL, Lesuisse E, Pain D, Dancis A (2010) Frataxin and mitochondrial FeS cluster biogenesis. J Biol Chem 285:26737–26743

    Article  PubMed  CAS  Google Scholar 

  86. Toro A, Grunebaum E (2006) TAT-mediated intracellular delivery of purine nucleoside phosphorylase corrects its deficiency in mice. J Clin Invest 116:2717–2726

    Article  PubMed  CAS  Google Scholar 

  87. Velasco-Sanchez D, Aracil A, Montero R, Mas A, Jimenez L, O’Callaghan M, Tondo M, Capdevila A, Blanch J, Artuch R, Pineda M (2010) Combined therapy with idebenone and deferiprone in patients with Friedreich’s ataxia. Cerebellum 10:1–8

    Article  Google Scholar 

  88. Vyas PM, Payne RM (2008) TAT opens the door. Mol Ther 16:647–648

    Article  PubMed  CAS  Google Scholar 

  89. Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P (2006) Newborn screening: toward a uniform screening panel and system. Genet Med 8:1S–11S

    Article  Google Scholar 

  90. Whitnall M, Rahmanto YS, Sutak R, Xu X, Becker EM, Mikhael MR, Ponka P, Richardson DR (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci USA 105:9757–9762

    Article  PubMed  CAS  Google Scholar 

  91. Yoon T, Cowan JA (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 279:25943–25946

    Article  PubMed  CAS  Google Scholar 

  92. Zhang Y, Lyver ER, Knight SA, Pain D, Lesuisse E, Dancis A (2006) Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. J Biol Chem 281:22493–22502

    Article  PubMed  CAS  Google Scholar 

  93. Zhang XY, Dinh A, Cronin J, Li SC, Reiser J (2008) Cellular uptake and lysosomal delivery of galactocerebrosidase tagged with the HIV TAT protein transduction domain. J Neurochem 104:1055–1064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this project was provided in part by the Friedreich’s Ataxia Research Alliance and the National Institutes of Health (1P01HL 085098 and R21 NS052198). The funding sources had no role in the performance or presentation of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mark Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, R.M., Pride, P.M. & Babbey, C.M. Cardiomyopathy of Friedreich’s Ataxia: Use of Mouse Models to Understand Human Disease and Guide Therapeutic Development. Pediatr Cardiol 32, 366–378 (2011). https://doi.org/10.1007/s00246-011-9943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-011-9943-6

Keywords

Navigation