Skip to main content

Advertisement

Log in

Age- and Chamber-Specific Differences in Oxidative Stress After Ischemic Injury

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Each year, tens of thousands of children undergo cardiopulmonary bypass (CPB) to correct congenital heart defects. Although necessary for surgery, CPB involves stopping the heart and exposing it to ischemic conditions. On reoxygenation, the heart can experience effects similar to that of acute myocardial infarction. Although much is known about adult injury, little is known about the effects of global ischemia on newborn ventricles. We studied newborn (2 to 4 days old) and adult (>8 weeks old) rabbit hearts subjected to ischemia–reperfusion (30 min of ischemia and 60 min of reperfusion). Our data demonstrated chamber- and age-specific changes in oxidative stress. During ischemia, hydrogen peroxide (H2O2) increased in both right-ventricular (RV) and left-ventricular (LV) myocytes of the newborn, although only the RV change was significant. In contrast, there was no significant increase in H2O2 in either RV or LV myocytes of adults. There was a fivefold increase in H2O2 formation in newborn RV myocytes compared with adults (P = 0.006). In whole-heart tissue, superoxide dismutase activity increased from sham versus ischemia in the left ventricle of both adult and newborn hearts, but it was increased only in the right ventricle of the newborn heart. Catalase activity was significantly increased after ischemia in both adult ventricles, whereas no increase was seen in newborn compared with sham hearts. In addition, catalase levels in newborns were significantly lower, indicating less scavenging potential. Nanoparticle-encapsulated ebselen, given as an intracardiac injection into the right or left ventricle of newborn hearts, significantly increased functional recovery of developed pressure only in the right ventricle, indicating the potential for localized antioxidant therapy during and after pediatric surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’Rourke B, Kass DA et al (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292(3):H1607–H1618

    Article  PubMed  CAS  Google Scholar 

  2. Awad AB, Clay SW (1982) Age-dependent alterations in lipids and function of rat heart sarcolemma. Mech Ageing Dev 19(4):333–342

    Article  PubMed  CAS  Google Scholar 

  3. Baker JE, Curry BD, Olinger GN, Gross GJ (1997) Increased tolerance of the chronically hypoxic immature heart to ischemia. Contribution of the KATP channel. Circulation 95(5):1278–1285

    PubMed  CAS  Google Scholar 

  4. Chambers DJ, Braimbridge MV, Hearse DJ (1987) Free radicals and cardioplegia. Free radical scavengers improve postischemic function of rat myocardium. Eur J Cardiothorac Surg 1(1):37–45

    Article  PubMed  CAS  Google Scholar 

  5. de Jong JW, van der Meer P, Nieukoop AS, Huizer T, Stroeve RJ, Bos E (1990) Xanthine oxidoreductase activity in perfused hearts of various species, including humans. Circ Res 67(3):770–773

    PubMed  Google Scholar 

  6. Ding G, Wiegerinck RF, Shen M, Cojoc A, Zeidenweber CM, Wagner MB (2008) Dopamine increases L-type calcium current more in newborn than adult rabbit cardiomyocytes via D1 and beta2 receptors. Am J Physiol Heart Circ Physiol 294(5):H2327–H2335

    Article  PubMed  CAS  Google Scholar 

  7. Ding Y, Li YL, Zimmerman MC, Davisson RL, Schultz HD (2009) Role of CuZn superoxide dismutase on carotid body function in heart failure rabbits. Cardiovasc Res 81(4):678–685

    Article  PubMed  CAS  Google Scholar 

  8. Fischer UM, Tossios P, Huebner A, Geissler HJ, Bloch W, Mehlhorn U (2004) Myocardial apoptosis prevention by radical scavenging in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 128(1):103–108

    Article  PubMed  CAS  Google Scholar 

  9. Fitzpatrick CM, Shi Y, Hutchins WC, Su J, Gross GJ et al (2005) Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am J Physiol Heart Circ Physiol 288(1):H62–H68

    Article  PubMed  CAS  Google Scholar 

  10. Gan XT, Cook MA, Moffat MP, Karmazyn M (1998) Protective effects against hydrogen peroxide-induced toxicity by activators of the ATP-sensitive potassium channel in isolated rat hearts. J Mol Cell Cardiol 30(1):33–41

    Article  PubMed  CAS  Google Scholar 

  11. Hoshida S, Aoki K, Nishida M, Yamashita N, Igarashi J, Hori M et al (1997) Effects of preconditioning with ebselen on glutathione metabolism and stress protein expression. J Pharmacol Exp Ther 281(3):1471–1475

    PubMed  CAS  Google Scholar 

  12. Hyslop PA, Hinshaw DB, Halsey WA Jr, Schraufstatter IU, Sauerheber RD, Spragg RG et al (1988) Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 263(4):1665–1675

    PubMed  CAS  Google Scholar 

  13. Ishikawa T, Yamamoto F, Ohashi T, Shimada Y, Kagisaki K, Kumada Y et al (1995) The effects of Ebselen upon post-ischemic functional recovery in rat heart. Nippon Kyobu Geka Gakkai Zasshi 43(4):458–465

    PubMed  CAS  Google Scholar 

  14. Ismail JA, McDonough KH (1998) The role of coronary flow and adenosine in postischemic recovery of septic rat hearts. Am J Physiol 275(1 Pt 2):H8–H14

    PubMed  CAS  Google Scholar 

  15. Kloner RA, Przyklenk K, Whittaker P (1989) Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation 80(5):1115–1127

    Article  PubMed  CAS  Google Scholar 

  16. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 107(35):15565–15570

    Article  PubMed  CAS  Google Scholar 

  17. Lancel S, Qin F, Lennon SL, Zhang J, Tong X, Mazzini MJ et al (2010) Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ Res 107(2):228–232

    Article  PubMed  CAS  Google Scholar 

  18. Ley SJ (1993) Myocardial depression after cardiac surgery: pharmacologic and mechanical support. AACN Clin Issues Crit Care Nurs 4(2):293–308

    PubMed  CAS  Google Scholar 

  19. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC et al (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51(2):319–325

    Article  PubMed  CAS  Google Scholar 

  20. Luo J, Xuan YT, Gu Y, Prabhu SD (2006) Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness. J Mol Cell Cardiol 40(1):64–75

    Article  PubMed  CAS  Google Scholar 

  21. Maher KO, Pizarro C, Gidding SS, Januszewska K, Malec E, Norwood WI Jr et al (2003) Hemodynamic profile after the Norwood procedure with right ventricle to pulmonary artery conduit. Circulation 108(7):782–784

    Article  PubMed  Google Scholar 

  22. Masse L, Antonacci M (2005) Low cardiac output syndrome: identification and management. Crit Care Nurs Clin North Am 17(4):375–383

    Article  PubMed  Google Scholar 

  23. Maulik N, Baker JE, Engelman RM, Das DK (1996) Postnatal developmental profiles of antioxidant enzymes in heart. Ann N Y Acad Sci 793:439–448

    Article  PubMed  CAS  Google Scholar 

  24. Milano CA, White WD, Smith LR, Jones RH, Lowe JE, Smith PK et al (1993) Coronary artery bypass in patients with severely depressed ventricular function. Ann Thorac Surg 56(3):487–493

    Article  PubMed  CAS  Google Scholar 

  25. Mozaffari MS, Baban B, Liu JY, Abebe W, Sullivan JC, El-Marakby A (2011) Mitochondrial complex I and NAD(P)H oxidase are major sources of exacerbated oxidative stress in pressure-overloaded ischemic-reperfused hearts. Basic Res Cardiol 106(2):287–297

    Article  PubMed  CAS  Google Scholar 

  26. Osaka T, Joyner RW (1992) Developmental changes in the beta-adrenergic modulation of calcium currents in rabbit ventricular cells. Circ Res 70(1):104–115

    PubMed  CAS  Google Scholar 

  27. Osaka T, Joyner RW, Kumar R (1993) Postnatal decrease in muscarinic cholinergic influence on Ca2+ currents of rabbit ventricular cells. Am J Physiol 264(6 Pt 2):H1916–H1925

    PubMed  CAS  Google Scholar 

  28. Parrish MD, Payne A, Fixler DE (1987) Global myocardial ischemia in the newborn, juvenile, and adult isolated isovolumic rabbit heart. Age-related differences in systolic function, diastolic stiffness, coronary resistance, myocardial oxygen consumption, and extracellular pH. Circ Res 61(5):609–615

    PubMed  CAS  Google Scholar 

  29. Pauliks LB, Undar A, Clark JB, Myers JL (2009) Segmental differences of impaired diastolic relaxation following cardiopulmonary bypass surgery in children: a tissue Doppler study. Artif Organs 33(11):904–908

    Article  PubMed  Google Scholar 

  30. Pendergrass KD, Varghese ST, Maiellaro-Rafferty K, Brown ME, Taylor WR, Davis ME (2011) Temporal effects of catalase overexpression on healing after myocardial infarction. Circ Heart Fail 4(1):98–106

    Article  PubMed  CAS  Google Scholar 

  31. Pizarro C, Malec E, Maher KO, Januszewska K, Gidding SS, Murdison KA et al (2003) Right ventricle to pulmonary artery conduit improves outcome after stage I Norwood for hypoplastic left heart syndrome. Circulation 108(1):II155–II160

    Article  PubMed  Google Scholar 

  32. Quaglietta D, Belanger MP, Wittnich C (2008) Ventricle-specific metabolic differences in the newborn piglet myocardium in vivo and during arrested global ischemia. Pediatr Res 63(1):15–19

    Article  PubMed  CAS  Google Scholar 

  33. Ravishankar C, Tabbutt S, Wernovsky G (2003) Critical care in cardiovascular medicine. Curr Opin Pediatr 15(5):443–453

    Article  PubMed  Google Scholar 

  34. Rowland RT, Meng X, Ao L, Terada LS, Harken AH, Brown JM (1995) Mechanisms of immature myocardial tolerance to ischemia: phenotypic differences in antioxidants, stress proteins, and oxidases. Surgery 118(2):446–452

    Article  PubMed  CAS  Google Scholar 

  35. Seshadri G, Sy JC, Brown M, Dikalov S, Yang SC, Murthy N et al (2010) The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 31(6):1372–1379

    Article  PubMed  CAS  Google Scholar 

  36. Shuhaiber HJ, Juggi JS, John V, Yousof AM, Braveny P (1990) Differences in the recovery of right and left ventricular function after ischaemic arrest and cardioplegia. Eur J Cardiothorac Surg 4(8):435–440

    Article  PubMed  CAS  Google Scholar 

  37. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8(3):132–140

    Article  PubMed  CAS  Google Scholar 

  38. Srivastava S, Chandrasekar B, Gu Y, Luo J, Hamid T, Hill BG et al (2007) Downregulation of CuZn-superoxide dismutase contributes to beta-adrenergic receptor-mediated oxidative stress in the heart. Cardiovasc Res 74(3):445–455

    Article  PubMed  CAS  Google Scholar 

  39. Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S et al (2008) Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater 7(11):863–868

    Article  PubMed  CAS  Google Scholar 

  40. Sy JC, Phelps EA, Garcia AJ, Murthy N, Davis ME (2010) Surface functionalization of polyketal microparticles with nitrilotriacetic acid-nickel complexes for efficient protein capture and delivery. Biomaterials 31(18):4987–4994

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka M, Mokhtari GK, Terry RD, Balsam LB, Lee KH, Kofidis T et al (2004) Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia–reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation 110(11 Suppl 1):II200–II206

    PubMed  Google Scholar 

  42. Venardos K, Ashton K, Headrick J, Perkins A (2005) Effects of dietary selenium on post-ischemic expression of antioxidant mRNA. Mol Cell Biochem 270(1–2):131–138

    Article  PubMed  CAS  Google Scholar 

  43. Wessel DL (2001) Managing low cardiac output syndrome after congenital heart surgery. Crit Care Med 29(10 Suppl):S220–S230

    Article  PubMed  CAS  Google Scholar 

  44. Wittnich C (1992) Age-related differences in myocardial metabolism affects response to ischemia. Age in heart tolerance to ischemia. Am J Cardiovasc Pathol 4(2):175–180

    PubMed  CAS  Google Scholar 

  45. Wittnich C, Peniston C, Ianuzzo D, Abel JG, Salerno TA (1987) Relative vulnerability of neonatal and adult hearts to ischemic injury. Circulation 76(5 Pt 2):V156–V160

    PubMed  CAS  Google Scholar 

  46. Wittnich C, Wallen WJ, Belanger MP, Ikonomidis JS (1999) Extracellular calcium concentration affects susceptibility to global ischemic injury in newborn but not adult hearts. J Heart Lung Transpl 18(7):675–683

    Article  CAS  Google Scholar 

  47. Wittnich C, Belanger MP, Bandali K (2006) Are there ventricle-specific postnatal maturational differences in myocardial beta-adrenoceptors? Can J Physiol Pharmacol 84(8–9):859–865

    Article  PubMed  CAS  Google Scholar 

  48. Wittnich C, Su J, Boscarino C, Belanger M (2006) Age-related differences in myocardial hydrogen ion buffering during ischemia. Mol Cell Biochem 285(1–2):61–67

    Article  PubMed  CAS  Google Scholar 

  49. Wittnich C, Belanger MP, Bandali KS (2007) Newborn hearts are at greater ‘metabolic risk’ during global ischemia—advantages of continuous coronary washout. Can J Cardiol 23(3):195–200

    Article  PubMed  CAS  Google Scholar 

  50. Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N (2008) Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem 19(6):1164–1169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an Emory-Children’s Center for Cardiovascular Biology Pilot Grant from Children’s Healthcare of Atlanta (M. E. D., G. D.) as well as Grant Nos. HL094527 and HL090601 to M. E. D. The authors thank Pao Lin Che for help in nanoparticle synthesis.

Conflict of interest

M. E. Davis, as well as Emory University, are entitled to equity and royalties derived from Ketal Biomedical, Incorporated, which is developing products related to the nanoparticle technology described in this article. This study could affect their personal financial status. The terms of this arrangement have been reviewed and approved by Emory University in accordance with its conflict-of-interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabigas, E.B., Ding, G., Chen, T. et al. Age- and Chamber-Specific Differences in Oxidative Stress After Ischemic Injury. Pediatr Cardiol 33, 322–331 (2012). https://doi.org/10.1007/s00246-011-0137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-011-0137-z

Keywords

Navigation