Skip to main content
Log in

Right Ventricle Myocardial Perfusion Scintigraphy: Feasibility and Expected Values in Children

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Stress myocardial perfusion scintigraphy imaging (SMPSI) has important applications for evaluating coronary disease and ventricular function. Studies consistently focus on the left ventricle (LV), with no normal right ventricle (RV) data available. This study sought to evaluate the feasibility of RV perfusion with technetium (Tc-99m) sestamibi using a low radiotracer dose for children free of coronary artery (CA) anomalies and to determine its normal pattern. Patients with a history of Kawasaki disease who showed no coronary complications on selective angiography or no LV perfusion defects on SMPSI were studied at rest and during an exercise challenge. The RV uptake counts were compared with those for different segments of the LV, and multiple ratios of the uptakes between RV and LV segments were calculated. The study subjects were 23 children (age, 11.1 ± 3.3 years) imaged with 0.12 ± 0.03 mCi/kg at rest and 0.31 ± 0.06 mCi/kg during stress. The RV to LV uptake proportion was approximately 6%. Exercise-related uptake increased threefold in both the RV and the LV. The findings showed RV myocardial scintigraphy to be feasible with reproducible ratios. Potential clinical applications include acquired and congenital CA anomalies such as Kawasaki disease, right CA ostium stenosis after a switch operation, and anomalous origin of the right CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akiba T, Yoshikawa M, Otaki S, Nakasato M, Suzuki H, Sato S, Sato T (1992) Estimation of right ventricular pressure in children by thallium-201 myocardial imaging using single-photon emission computed tomography. Am J Cardiol 69:673–676

    Article  PubMed  CAS  Google Scholar 

  2. Alam M, Samad BA (1999) Detection of exercise-induced reversible right ventricular wall motion abnormalities using echocardiographic determined tricuspid annular motion. Am J Cardiol 83:103–105, A8

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong DW, Matangi MF (2010) Estimated right ventricular systolic pressure during exercise stress echocardiography in patients with suspected coronary artery disease. Can J Cardiol 26:e45–e49

    Article  PubMed  Google Scholar 

  4. Ayalp R, Mavi A, Serçelik A, Batyraliev T, Gümüsburun E (2002) Frequency of the anomalous origin of the right coronary artery with angiography in a Turkish population. Int J Cardiol 82:253–257

    Article  PubMed  Google Scholar 

  5. Bangalore S, Yao SS, Chaudhry FA (2007) Role of right ventricular wall motion abnormalities in risk stratification and prognosis of patients referred for stress echocardiography. J Am Coll Cardiol 50:1981–1989

    Article  PubMed  Google Scholar 

  6. Basso C, Maron BJ, Corrado D, Thiene G (2000) Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol 35:1493–1501

    Article  PubMed  CAS  Google Scholar 

  7. Bonnet D, Bonhoeffer P, Piéchaud JF, Aggoun Y, Sidi D, Planché C, Kachaner J (1996) Long-term fate of the coronary arteries after the arterial switch operation in newborns with transposition of the great arteries. Heart 76:274–279

    Article  PubMed  CAS  Google Scholar 

  8. Chen ML, Lo HS, Chao IM, Su HY (2007) Dipyridamole Tl-201 myocardial single photon emission computed tomography in the functional assessment of anomalous left coronary artery from the pulmonary artery. Clin Nucl Med 32:940–943

    Article  PubMed  CAS  Google Scholar 

  9. Cumming GR, Everatt D, Hastman L (1978) Bruce treadmill test in children: normal values in a clinic population. Am J Cardiol 41:69–75

    Article  PubMed  CAS  Google Scholar 

  10. Curtis N, Levin M (1998) Kawasaki disease thirty years on. Curr Opin Pediatr 10:24–33

    Article  PubMed  CAS  Google Scholar 

  11. Dahdah NS, Fournier A, Jaeggi E, van Doesburg NH, Lambert R, Dionne N, Sauvé C (1999) Segmental myocardial contractility versus perfusion in Kawasaki disease with coronary arterial aneurysm. Am J Cardiol 83:48–51

    Article  PubMed  CAS  Google Scholar 

  12. Dajani AS, Taubert KA, Gerber MA, Shulman ST, Ferrieri P, Freed M, Takahashi M, Bierman FZ, Karchmer AW, Wilson W (1993) Diagnosis and therapy of Kawasaki disease in children. Circulation 87:1776–1780

    PubMed  CAS  Google Scholar 

  13. Davis JA, Cecchin F, Jones TK, Portman MA (2001) Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 37:593–597

    Article  PubMed  CAS  Google Scholar 

  14. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L (1993) Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 22:796–804

    Article  PubMed  CAS  Google Scholar 

  15. Elhendy A, Zoet-Nugteren S, Cornel JH, Fioretti PM, Bogers AJ, Roelandt JR, Krenning E, Postma-Tjoa J, McGhie J, Spitaels SE (1996) Functional assessment of ALCAPA syndrome by dobutamine stress thallium-201 SPECT and echocardiography. J Nucl Med 37:748–751

    PubMed  CAS  Google Scholar 

  16. El-Segaier M, Lundin A, Hochbergs P, Jögi P, Pesonen E (2010) Late coronary complications after arterial switch operation and their treatment. Catheter Cardiovasc Interv 76:1027–1032

    Article  PubMed  Google Scholar 

  17. Espinola-Zavaleta N, Alexanderson E, Attié F, Castellanos LM, Dueñas R, Rosas M, Keirns C (2004) Right ventricular function and ventricular perfusion defects in adults with congenitally corrected transposition: correlation of echocardiography and nuclear medicine. Cardiol Young 14:174–181

    Article  PubMed  Google Scholar 

  18. Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A, Daliento L (1998) Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol 29:689–695

    Article  PubMed  CAS  Google Scholar 

  19. Fukuda T, Ishibashi M, Yokoyama T, Otaki M, Shinohara T, Nakamura Y, Miyake T, Kudoh T, Oku H (2002) Myocardial ischemia in Kawasaki disease: evaluation with dipyridamole stress technetium 99m tetrofosmin scintigraphy. J Nucl Cardiol 9:632–637

    Article  PubMed  Google Scholar 

  20. Haley JH, Miller TD (2001) Myocardial ischemia on thallium scintigraphy in hypertrophic cardiomyopathy: predictor of sudden cardiac death. Circulation 104:E71–E71

    Article  PubMed  CAS  Google Scholar 

  21. Hamamichi Y, Ichida F, Tsubata S, Hirono K, Watanabe S, Rui C, Yu X, Uese K, Hashimoto I, Simizu M, Seto H, Origasa H, Miyawaki T (2002) Dobutamine stress radionuclide ventriculography reveals silent myocardial dysfunction in Kawasaki disease. Circ J 66:63–69

    Article  PubMed  Google Scholar 

  22. Hayes AM, Baker EJ, Kakadeker A, Parsons JM, Martin RP, Radley-Smith R, Qureshi SA, Yacoub M, Maisey MN, Tynan M (1994) Influence of anatomic correction for transposition of the great arteries on myocardial perfusion: radionuclide imaging with technetium-99m 2-methoxy isobutyl isonitrile. J Am Coll Cardiol 24:769–777

    Article  PubMed  CAS  Google Scholar 

  23. Kashyap R, Mittal BR, Bhattacharya A, Manojkumar R, Singh S (2011) Exercise myocardial perfusion imaging to evaluate inducible ischaemia in children with Kawasaki disease. Nucl Med Commun 32:137–141

    Article  PubMed  Google Scholar 

  24. Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, Kazue T, Eto G, Yamakawa R (1996) Long-term consequences of Kawasaki disease: a 10- to 21-year follow-up study of 594 patients. Circulation 94:1379–1385

    PubMed  CAS  Google Scholar 

  25. Legendre A, Losay J, Touchot-Koné A, Serraf A, Belli E, Piot JD, Lambert V, Capderou A, Planche C (2003) Coronary events after arterial switch operation for transposition of the great arteries. Circulation 108(Suppl 1):186–190

    Google Scholar 

  26. Liberthson RR, Dinsmore RE, Fallon JT (1979) Aberrant coronary artery origin from the aorta: report of 18 patients, review of literature and delineation of natural history and management. Circulation 59:748–754

    PubMed  CAS  Google Scholar 

  27. Lim CW, Ho KT, Quek SC (2006) Exercise myocardial perfusion stress testing in children with Kawasaki disease. J Paediatr Child Health 42:419–422

    Article  PubMed  Google Scholar 

  28. Millane T, Bernard EJ, Jaeggi E, Howman-Giles RB, Uren RF, Cartmill TB, Hawker RE, Celermajer DS (2000) Role of ischemia and infarction in late right ventricular dysfunction after atrial repair of transposition of the great arteries. J Am Coll Cardiol 35:1661–1668

    Article  PubMed  CAS  Google Scholar 

  29. Miyagawa M, Mochizuki T, Murase K, Tanada S, Ikezoe J, Sekiya M, Hamamoto K, Matsumoto S, Niino M (1998) Prognostic value of dipyridamole-thallium myocardial scintigraphy in patients with Kawasaki disease. Circulation 98:990–996

    PubMed  CAS  Google Scholar 

  30. Muta H, Ishii M (2010) Percutaneous coronary intervention versus coronary artery bypass grafting for stenotic lesions after Kawasaki disease. J Pediatr 157:120–126

    Article  PubMed  Google Scholar 

  31. Nadel HR, Stilwell ME (1998) Cardiopulmonary nuclear medicine in children. In: Freeman LM (ed) Nuclear Medicine Annual 1998. Lippincott-Raven Publishers, Philadelphia, pp 165–224

    Google Scholar 

  32. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, Shulman ST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME, Pallasch TJ, Falace DA, Taubert KA, Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114:1708–1733

    Google Scholar 

  33. Picano E (2009) Stress echocardiography, 5th edn. Springer, Berlin, pp 105–123

    Book  Google Scholar 

  34. Rabinovitch M, Fischer KC, Treves S (1981) Quantitative thallium-201 myocardial imaging in assessing right ventricular pressure in patients with congenital heart defects. Br Heart J 45:198–205

    Article  PubMed  CAS  Google Scholar 

  35. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  36. Scopinaro F, Manni C, Miccheli A, Massa R, De Vincentis G, Schillaci O, Ierardi M, Danieli R, Banci M, Iorio F (1996) Muscular uptake of Tc-99m MIBI and TI-201 in Duchenne muscular dystrophy. Clin Nucl Med 21:792–796

    Article  PubMed  CAS  Google Scholar 

  37. Senzaki H (2008) Long-term outcome of Kawasaki disease. Circulation 118:2763–2772

    Article  PubMed  Google Scholar 

  38. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt JU, Zamorano JL, European Association of Echocardiography (2009) Stress Echocardiography Expert Consensus Statement–Executive Summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 30:278–289

    Article  PubMed  Google Scholar 

  39. Stern H, Sauer U, Locher D, Bauer R, Meisner H, Sebening F, Bühlmeyer K (1993) Left ventricular function assessed with echocardiography and myocardial perfusion assessed with scintigraphy under dipyridamole stress in pediatric patients after repair for anomalous origin of the left coronary artery from the pulmonary artery. J Thorac Cardiovasc Surg 106:723–732

    PubMed  CAS  Google Scholar 

  40. Suzuki A, Kamiya T, Kuwahara N, Ono Y, Kohata T, Takahashi O, Kimura K, Takamiya M (1986) Coronary arterial lesions of Kawasaki disease: cardiac catheterization findings of 1,100 cases. Pediatr Cardiol 7:3–9

    Article  PubMed  CAS  Google Scholar 

  41. Tanel RE, Wernovsky G, Landzberg MJ, Perry SB, Burke RP (1995) Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol 76:153–157

    Article  PubMed  CAS  Google Scholar 

  42. Taylor AJ, Rogan KM, Virmani R (1992) Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol 20:640–647

    Article  PubMed  CAS  Google Scholar 

  43. Vogel M, Smallhorn JF, Gilday D, Benson LN, Ash J, Williams WG, Freedom RM (1991) Assessment of myocardial perfusion in patients after the arterial switch operation. J Nucl Med 32:237–241

    PubMed  CAS  Google Scholar 

  44. Weindling SN, Wernovsky G, Colan SD, Parker JA, Boutin C, Mone SM, Costello J, Castañeda AR, Treves ST (1994) Myocardial perfusion, function, and exercise tolerance after the arterial switch operation. J Am Coll Cardiol 23:424–433

    Article  PubMed  CAS  Google Scholar 

  45. Wilkins CE, Betancourt B, Mathur VS, Massumi A, De Castro CM, Garcia E, Hall RJ (1988) Coronary artery anomalies: a review of more than 10,000 patients from the Clayton Cardiovascular Laboratories. Tex Heart Inst J 15:166–173

    PubMed  CAS  Google Scholar 

  46. Yamanaka O, Hobbs RE (1990) Coronary artery anomalies in 126, 595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn 21:28–40

    Article  PubMed  CAS  Google Scholar 

  47. Yang HS, Mookadam F, Warsame TA, Khandheria BK, Tajik JA, Chandrasekaran K (2010) Evaluation of right ventricular global and regional function during stress echocardiography using novel velocity vector imaging. Eur J Echocardiogr 11:157–164

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was a site-specific subanalysis from a large multinational industry-sponsored study. Dr. Velasco-Sanchez is supported by two unrestricted grants provided by the LaCaixa Foundation, Spain, and the Sainte-Justine Hospital Foundation, Montreal, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagib Dahdah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco-Sanchez, D., Lambert, R., Turpin, S. et al. Right Ventricle Myocardial Perfusion Scintigraphy: Feasibility and Expected Values in Children. Pediatr Cardiol 33, 295–301 (2012). https://doi.org/10.1007/s00246-011-0128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-011-0128-0

Keywords

Navigation