Skip to main content

Advertisement

Log in

Establishment of Secondary Iron Overloaded Mouse Model: Evaluation of Cardiac Function and Analysis According to Iron Concentration

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Periodic blood transfusion can lead to secondary iron overload in patients with hematologic and oncologic diseases. Iron overload can result in iron deposition in heart tissue, which decreases cardiac function and can ultimately lead to death due to dilated cardiomyopathy and cardiac failure. In this study, we established murine model of secondary iron overload, studied the changes in cardiac function with echocardiography, and examined the histopathologic changes. Three experimental groups of the six week-old C57/BL mice (H-2b) were injected intraperitoneally with 10 mg of iron dextran daily 5 days a week for 2, 4, and 6 weeks. Cumulative doses of iron for the three experimental groups were 100, 200, and 300 mg, while the control groups were injected with the same amounts of phosphate-buffered saline. We studied the cardiac function under anesthesia with echocardiography using a GE Vivid7 Dimension system. Plasma iron levels and liver iron contents were measured. The hearts and livers were harvested and stained with H&E and Perls Prussian blue for iron, and the levels of iron deposit were examined. We assessed the cardiac measurements after adjustment for weight. On echocardiography, thicknesses of the interventricular septum and posterior ventricular wall (PS) during diastole showed correlation with the amount of iron deposit (P < 0.01). End-diastolic volume showed dilatation of the left ventricle in the 300 mg group (P < 0.01). Changes in the fractional shortening were not statistically significant (P = 0.07). Plasma iron levels and liver iron contents were increased proportionally according to the amount of iron loaded. The histopathologic findings of PS and liver showed higher grade of iron deposit proportional to the cumulated iron dose. In this study, we present an animal model which helps understand the cardiac function changes in patients with secondary iron overload due to repeated blood transfusions. Our results may help characterize the pathophysiologic features of cardiomyopathy in patients with secondary iron overload, and our model may be applied to in vivo iron-chelating therapy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abraham NG, Lutton JD (1994) Differential effects of iron and iron carrier on hematopoietic cells differentiation and human ADA gene transfer. Adv Exp Med Biol 356:199–210

    Article  PubMed  CAS  Google Scholar 

  2. Aldouri MA, Wonke B, Hoffbrand AV, Flynn DM, Ward SE, Agnew JE, Hilson AJ (1990) High incidence of cardiomyopathy in beta-thalassaemia patients receiving regular transfusion and iron chelation: reversal by intensified chelation. Acta Haematol 84:113–117

    Article  PubMed  CAS  Google Scholar 

  3. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker JM, Pennell DJ (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:217–219

    Google Scholar 

  4. Bacon BR, Park CH, Brittenham GM, O’Neill R, Tavill AS (1985) Hepatic mitochondrial oxidative metabolism in rats with chronic dietary iron overload. Hepatology 5:789–797

    Article  PubMed  CAS  Google Scholar 

  5. Barosi G, Arbustini E, Gavazzi A, Grasso M, Pucci A (1989) Myocardial iron grading by endomyocardial biopsy. A clinico-pathologic study on iron overloaded patients. Eur J Haematol 42:382–388

    Article  PubMed  CAS  Google Scholar 

  6. Baumann PQ, Sobel BE, Tarikuz Zaman AK, Schneider DJ (2008) Gender-dependent differences in echocardiographic characteristics of murine hearts. Echocardiography 25:739–748

    Article  PubMed  Google Scholar 

  7. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18

    Article  PubMed  CAS  Google Scholar 

  8. Davis BA, O’Sullivan C, Jarritt PH, Porter JB (2004) Value of sequential monitoring of left ventricular ejection fraction in the management of thalassemia major. Blood 104:263–269

    Article  PubMed  CAS  Google Scholar 

  9. Delea TE, Hagiwara M, Phatak PD (2009) Retrospective study of the association between transfusion frequency and potential complications of iron overload in patients with myelodysplastic syndrome and other acquired hematopoietic disorders. Curr Med Res Opin 25:139–147

    Article  PubMed  Google Scholar 

  10. Demant AW, Schmiedel A, Büttner R, Lewalter T, Reichel C (2007) Heart failure and malignant ventricular tachyarrhythmias due to hereditary hemochromatosis with iron overload cardiomyopathy. Clin Res Cardiol 96:900–903

    Article  PubMed  CAS  Google Scholar 

  11. Deugnier Y, Turlin B (2007) Pathology of iron overlaod. World J Gastroenterol 13:4755–4760

    PubMed  CAS  Google Scholar 

  12. Deugnier YM, Turlin B, Powell LW, Summers KM, Moirand R, Fletcher L, Loréal O, Brissot P, Halliday JW (1993) Differentiation between heterozygotes and homozygotes in genetic hemochromatosis by means of a histological hepatic iron index: a study of 192 cases. Hepatology 17:30–34

    Article  PubMed  CAS  Google Scholar 

  13. Freeman AP, Giles RW, Berdoukas VA, Talley PA, Murray IP (1989) Sustained normalization of cardiac function by chelation therapy in thalassaemia major. Clin Lab Haematol 11:299–307

    Article  PubMed  CAS  Google Scholar 

  14. Gabutti V, Borgna-Pignatti C (1994) Clinical manifestations and therapy of transfusional haemosiderosis. Baillieres Clin Haematol 7:919–940

    Article  PubMed  CAS  Google Scholar 

  15. Glickstein H, El RB, Shvartsman M, Cabantchik Z (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250

    Article  PubMed  CAS  Google Scholar 

  16. Henry WL, Nienhuis AW, Wiener M, Miller DR, Canale VC, Piomelli S (1978) Echocardiographic abnormalities in patients with transfusion-dependent anemia and secondary myocardial iron deposition. Am J Med 64:547–555

    Article  PubMed  CAS  Google Scholar 

  17. Liu P, Olivieri N (1994) Iron overload cardiomyopathies: new insights into an old disease. Cardiovasc Drugs Ther 8:101–110

    Article  PubMed  CAS  Google Scholar 

  18. Lombardo T, Tamburino C, Bartoloni G, Morrone ML, Frontini V, Italia F, Cordaro S, Privitera A, Calvi V (1995) Cardiac iron overload in thalassemic patients: an endomyocardial biopsy study. Ann Hematol 71:135–141

    Article  PubMed  CAS  Google Scholar 

  19. Maeda T, Shimada M, Harimoto N, Tsujita E, Maehara S, Rikimaru T, Tanaka S, Shirabe K, Maehara Y (2005) Role of tissue trace elements in liver cancers and non-cancerous liver parenchyma. Hepatogastroenterology 52:187–190

    PubMed  CAS  Google Scholar 

  20. Mamtani M, Kulkarni H (2008) Influence of iron chelators on myocardial iron and cardiac function in transfusion-dependent thalassaemia: a systematic review and meta-analysis. Br J Haematol 141:882–890

    Article  PubMed  CAS  Google Scholar 

  21. McLaren GD, Muir WA, Kellermeyer RW (1983) Iron overload disorders: natural history, pathogenesis, diagnosis, and therapy. Crit Rev Clin Lab Sci 19:205–266

    Article  PubMed  CAS  Google Scholar 

  22. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9:1187–1194

    Article  PubMed  CAS  Google Scholar 

  23. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885

    Article  PubMed  CAS  Google Scholar 

  24. Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH (2006) Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med 84:349–364

    Article  PubMed  CAS  Google Scholar 

  25. Ozment CP, Turi JL (2009) Iron overload following red blood cell transfusion and its impact on disease severity. Biochim Biophys Acta 1790:694–701

    PubMed  CAS  Google Scholar 

  26. Pantopoulos K (2008) Function of the hemochromatosis protein HFE: lessons from animal models. World J Gastroenterol 14:6893–6901

    Article  PubMed  CAS  Google Scholar 

  27. Porter JB (2001) Practical management of iron overload. Br J Haematol 115:239–252

    Article  PubMed  CAS  Google Scholar 

  28. Siah CW, Trinder D, Olynyk JK (2005) Iron overload. Clin Chim Acta 358:24–36

    Article  PubMed  CAS  Google Scholar 

  29. Taher A, El-Beshlawy A, Elalfy MS, Al Zir K, Daar S, Habr D, Kriemler-Krahn U, Hmissi A, Al Jefri A (2009) Efficacy and safety of deferasirox, an oral iron chelator, in heavily iron-overloaded patients with beta-thalassaemia: the ESCALATOR study. Eur J Haematol 82:458–465

    Article  PubMed  CAS  Google Scholar 

  30. Wood JC, Enriquez C, Ghugre N, Otto-Duessel M, Aguilar M, Nelson MD, Moats R, Coates TD (2005) Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann NY Acad Sci 1054:386–395

    Article  PubMed  CAS  Google Scholar 

  31. Wood JC, Otto-Duessel M, Gonzalez I, Aguilar MI, Shimada H, Nick H, Nelson M, Moats R (2006) Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl Res 148:272–280

    Article  PubMed  CAS  Google Scholar 

  32. Zhang D, Okada S, Kawabata T, Yasuda T (1995) An improved simple colorimetric method for quantitation of non-transferrin-bound iron in serum. Biochem Mol Biol Int 35:635–641

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Chul Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, S.N., Han, J.W., Hwang, H.S. et al. Establishment of Secondary Iron Overloaded Mouse Model: Evaluation of Cardiac Function and Analysis According to Iron Concentration. Pediatr Cardiol 32, 947–952 (2011). https://doi.org/10.1007/s00246-011-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-011-0019-4

Keywords

Navigation