Skip to main content

Advertisement

Log in

Tissue–Tissue Interactions During Morphogenesis of the Outflow Tract

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The heart forms as a linear heart tube that loops and septates to produce a mature four-chambered structure. The single vessel emerging from the embryonic heart, the truncus arteriosus, divides into the aorta and the pulmonary artery as part of this septation process, and a series of additional morphogenetic events result in the proper alignment and orientation of the cardiac outflow tract. Recent evidence indicates that this process involves the complex interactions of multiple cell types including primary and secondary heart fields, neural crest, pharyngeal mesenchyme, endoderm, and endothelium. Among the many signals that mediate tissue–tissue interactions during the formation of the outflow tract, we have focused on the role of the Notch signaling pathway. Here, we focus on recent advances in our understanding of Notch-mediated regulation of cardiac development with specific attention to the formation of the cardiac outflow tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abu-Issa R, Smyth G, Smoak I, Yamamura K-i, Meyers EN (2002) Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129:4613–4625

    CAS  PubMed  Google Scholar 

  2. Bella JN, Tang W, Kraja A, Rao DC, Hunt SC, Miller MB, Palmieri V, Roman MJ, Kitzman DW, Oberman A, Devereux RB, Arnett DK (2007) Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: the Hypertension Genetic Epidemiology Network Study. Hypertension 49:453–460

    Article  CAS  PubMed  Google Scholar 

  3. Bockman DE, Kirby ML (1984) Dependence of thymus development on derivatives of the neural crest. Science 223:498–500

    Article  CAS  PubMed  Google Scholar 

  4. Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J (2007) The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res 100:220–228

    Article  CAS  PubMed  Google Scholar 

  5. Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    CAS  PubMed  Google Scholar 

  6. Epstein JA (2001) Developing models of DiGeorge syndrome. Trends Genet 17:S13–S17

    Article  CAS  PubMed  Google Scholar 

  7. Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603

    CAS  PubMed  Google Scholar 

  8. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270

    Article  CAS  PubMed  Google Scholar 

  9. Gaussin V, Van de Putte T, Mishina Y, Hanks MC, Zwijsen A, Huylebroeck D, Behringer RR, Schneider MD (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proceedings of the National Academy of Sciences 99:2878–2883

    Article  CAS  Google Scholar 

  10. Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E, Conta JH, Korn JM, McCarroll SA, Gorham JM, Gabriel S, Altshuler DM, Quintanilla-Dieck Mde L, Artunduaga MA, Eavey RD, Plenge RM, Shadick NA, Weinblatt ME, De Jager PL, Hafler DA, Breitbart RE, Seidman JG, Seidman CE (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41:931–935

    Article  CAS  PubMed  Google Scholar 

  11. Hayward P, Kalmar T, Arias AM (2008) Wnt/Notch signalling and information processing during development. Development 135:411–424

    Article  CAS  PubMed  Google Scholar 

  12. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9:49–61

    Article  CAS  PubMed  Google Scholar 

  13. High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, Kaestner KH, Pear WS, Epstein JA (2009) Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119:1986–1996

    CAS  PubMed  Google Scholar 

  14. Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  15. Ilagan R, Abu-Issa R, Brown D, Yang Y-P, Jiao K, Schwartz RJ, Klingensmith J, Meyers EN (2006) Fgf8 is required for anterior heart field development. Development 133:2435–2445

    Article  CAS  PubMed  Google Scholar 

  16. Jia Q, McDill BW, Li SZ, Deng C, Chang CP, Chen F (2007) Smad signaling in the neural crest regulates cardiac outflow tract remodeling through cell autonomous and non-cell autonomous effects. Dev Biol 311:172–184

    Article  CAS  PubMed  Google Scholar 

  17. Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA (2004) Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development 131:3481–3490

    Article  CAS  PubMed  Google Scholar 

  18. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  CAS  PubMed  Google Scholar 

  19. Kirby ML (1987) Cardiac morphogenesis—recent research advances. Pediatr Res 21:219–224

    Article  CAS  PubMed  Google Scholar 

  20. Kochilas L, Merscher-Gomez S, Lu MM, Potluri V, Liao J, Kucherlapati R, Morrow B, Epstein JA (2002) The role of neural crest during cardiac development in a mouse model of DiGeorge syndrome. Dev Biol 251:157–166

    Article  CAS  PubMed  Google Scholar 

  21. Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11:951–957

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Selever J, Wang D, Lu MF, Moses KA, Schwartz RJ, Martin JF (2004) Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci USA 101:4489–4494

    Article  CAS  PubMed  Google Scholar 

  23. Martin LJ, Ramachandran V, Cripe LH, Hinton RB, Andelfinger G, Tabangin M, Shooner K, Keddache M, Benson DW (2007) Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum Genet 121:275–284

    Article  CAS  PubMed  Google Scholar 

  24. McCulley DJ, Kang J-O, Martin JF, Black BL (2008) BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 237:3200–3209

    Article  CAS  PubMed  Google Scholar 

  25. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  CAS  PubMed  Google Scholar 

  26. Nigam V, Srivastava D (2009) Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol 47:828–834

    Article  CAS  PubMed  Google Scholar 

  27. Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R, Shahidi R, Dorovini-Zis K, Li L, Beckstead B, Durand RE, Hoodless PA, Karsan A (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res 94:910–917

    Article  CAS  PubMed  Google Scholar 

  28. Park EJ, Ogden LA, Talbot A, Evans S, Cai C-L, Black BL, Frank DU, Moon AM (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133:2419–2433

    Article  CAS  PubMed  Google Scholar 

  29. Park EJ, Watanabe Y, Smyth G, Miyagawa-Tomita S, Meyers E, Klingensmith J, Camenisch T, Buckingham M, Moon AM (2008) An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 135:3599–3610

    Article  CAS  PubMed  Google Scholar 

  30. Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16:70–82

    Article  CAS  PubMed  Google Scholar 

  31. Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei MG, Kelly RG (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One 4:e6267

    Article  PubMed  Google Scholar 

  32. Song L, Li Y, Wang K, Zhou CJ (2009) Cardiac neural crest and outflow tract defects in Lrp6 mutant mice. Dev Dyn 239:200–210

    Google Scholar 

  33. Stottmann RW, Choi M, Mishina Y, Meyers EN, Klingensmith J (2004) BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development 131:2205–2218

    Article  CAS  PubMed  Google Scholar 

  34. Tang SC, Jeng JS, Lee MJ, Yip PK (2009) Notch signaling and CADASIL. Acta Neurol Taiwan 18:81–90

    PubMed  Google Scholar 

  35. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115

    Article  CAS  PubMed  Google Scholar 

  36. Tkatchenko TV, Moreno-Rodriguez RA, Conway SJ, Molkentin JD, Markwald RR, Tkatchenko AV (2009) Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiol Genomics 39:160–168

    Article  PubMed  Google Scholar 

  37. Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, Epstein JA, Kaartinen V (2005) Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol 286:299–310

    Article  CAS  PubMed  Google Scholar 

  38. Warthen DM, Moore EC, Kamath BM, Morrissette JJ, Sanchez P, Piccoli DA, Krantz ID, Spinner NB (2006) Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat 27:436–443

    Article  CAS  PubMed  Google Scholar 

  39. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20:2096–2109

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Lin Y, Zhang Y, Lan Y, Lin C, Moon AM, Schwartz RJ, Martin JF, Wang F (2008) Frs2{alpha}-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis. Development 135:3611–3622

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Singh MK, Degenhardt KR, Lu MM, Bennett J, Yoshida Y, Epstein JA (2009) Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects. Dev Biol 325:82–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Epstein laboratory for many helpful discussions. This work was supported by the American Heart Association Physician-Scientist/Post-Doctoral fellowship (AHA0825548D) to R.J., the University of Pennsylvania, Division of Cardiology T-32 and Benjamin & Mary Siddons Measey Foundation to S.R., and NIH P01 HL075215 and funds from the WW Smith Endowed Chair for Cardiovascular Research to J.A.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Epstein.

Additional information

Stacey Rentschler and Rajan Jain contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentschler, S., Jain, R. & Epstein, J.A. Tissue–Tissue Interactions During Morphogenesis of the Outflow Tract. Pediatr Cardiol 31, 408–413 (2010). https://doi.org/10.1007/s00246-009-9611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9611-2

Keywords

Navigation