Skip to main content

Advertisement

Log in

Insights into the Characteristics of Mammalian Cardiomyocyte Terminal Differentiation Shown Through the Study of Mice with a Dysfunctional c-Kit

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Mammalian cardiomyocytes withdraw from the cell cycle soon after birth. This process is called terminal differentiation. The c-kit, a receptor tyrosine kinase, is expressed on cardiomyocytes immediately after birth but for only a few days. In mice with genetic c-kit dysfunction, adult cardiomyocytes are phenotypically indistinguishable from those of wild type mice, except that they are capable of proliferation in vivo after acute pressure overload. This review explores the idea that postnatal cardiomyocyte differentiation and cell cycle withdrawal are distinct processes and that terminal differentiation may not simply be due to altered expression of genes that regulate the cell cycle but could involve c-kit induced epigenetic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544

    Article  PubMed  CAS  Google Scholar 

  2. Ausma J, Schaart G, Thoné F et al (1995) Chronic ischemic viable myocardium in man: aspects of dedifferentiation. Cardiovasc Pathol 4:29–37

    Article  Google Scholar 

  3. Chaudhry HW, Dashoush NH, Tang H et al (2004) Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 279:35858–35866

    Article  PubMed  CAS  Google Scholar 

  4. Ehler E, Rothen BM, Hämmerle SP et al (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line, and the thick filaments. J Cell Sci 112:1529–1539

    PubMed  CAS  Google Scholar 

  5. Engel FB, Schebesta M, Duong MT et al (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19:1175–1187

    Article  PubMed  CAS  Google Scholar 

  6. Esposito G, Rapacciuolo A, Naga Prasad SV et al (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105:85–92

    Article  PubMed  CAS  Google Scholar 

  7. Gulick J, Subramaniam A, Neumann J, Robbins J (1991) Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem 266:9180–9185

    PubMed  CAS  Google Scholar 

  8. Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level, and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36:45–51

    Article  PubMed  CAS  Google Scholar 

  9. Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441

    Article  PubMed  CAS  Google Scholar 

  10. Hubbard SR (2004) Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol 5:464–471

    Article  PubMed  CAS  Google Scholar 

  11. Li M, Naqvi N, Yahiro E, Liu K et al (2008) C-kit is required for cardiomyocyte terminal differentiation. Circ Res 102:677–685

    Article  PubMed  CAS  Google Scholar 

  12. Mol CD, Lim KB, Sridhar V et al (2003) Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem 278:31461–31464

    Article  PubMed  CAS  Google Scholar 

  13. Mol CD, Dougan DR, Schneider TR et al (2004) Structural basis for the autoinhibition and STI-571 inhibition of c-kit tyrosine kinase. J Biol Chem 279:31655–31663

    Article  PubMed  CAS  Google Scholar 

  14. Ng WA, Grupp IL, Subramaniam A, Robbins J (1991) Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ Res 68:1742–1750

    PubMed  CAS  Google Scholar 

  15. Nocka K, Majumder S, Chabot B, Ray P et al (1989) Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice: evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3:816–826

    Article  PubMed  CAS  Google Scholar 

  16. Nocka K, Tan JC, Chiu E et al (1990) Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting lOCUS: W37, W′, W41, and W. EMBO J 9:1805–1813

    PubMed  CAS  Google Scholar 

  17. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253

    Article  PubMed  CAS  Google Scholar 

  18. Pasumarthi KB, Nakajima H, Nakajima HO et al (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118

    Article  PubMed  CAS  Google Scholar 

  19. Poolman RA, Brooks G (1998) Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J Mol Cell Cardiol 10:2121–2135

    Article  Google Scholar 

  20. Poolman RA, Gilchrist R, Brooks G (1998) Cell cycle profiles and expressions of p21CIP1 AND P27KIP1 during myocyte development. Int J Cardiol 67:133–142

    Article  PubMed  CAS  Google Scholar 

  21. Poolman RA, Li JM, Durand B, Brooks G (1999) Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. Circ Res 85:117–127

    PubMed  CAS  Google Scholar 

  22. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  PubMed  CAS  Google Scholar 

  23. Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol 51:186–273

    PubMed  CAS  Google Scholar 

  24. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272:H220–H226

    PubMed  CAS  Google Scholar 

  25. Soonpaa MH, Kim KK, Pjak L et al (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:2183–2189

    Google Scholar 

  26. Soonpaa MH, Koh GY, Pajak L et al (1997) Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 99:2644–2654

    Article  PubMed  CAS  Google Scholar 

  27. Zeller R, Bloch KD, Williams BS et al (1987) Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev 1:693–698

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Husain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naqvi, N., Li, M., Yahiro, E. et al. Insights into the Characteristics of Mammalian Cardiomyocyte Terminal Differentiation Shown Through the Study of Mice with a Dysfunctional c-Kit. Pediatr Cardiol 30, 651–658 (2009). https://doi.org/10.1007/s00246-008-9366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-008-9366-1

Keywords

Navigation