Skip to main content

Advertisement

Log in

Modeling the Fontan Circulation: Where We Are and Where We Need to Go

  • Review
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The Fontan procedure and its subsequent modifications over the past 30 years can be described as a class of surgical procedures for patients born with complex congenital heart disease exhibiting a single-ventricle physiology. The long-term outcome for children currently undergoing a Fontan procedure remains worrisome because of multiple late morbidities observed. Despite significant modeling efforts spanning three decades, improvements to the Fontan procedure have occurred without comprehensive validation from these modeling studies. Careful examination shows that modeling studies to date offer only a “glimpse through a keyhole” into understanding and modeling a representative range of the variations in anatomy and physiology that exist in Fontan patients. Suggestions for future investigations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexi-Meskishvili V, Ovroutski S, Ewert P, Nurnberg JH, Stiller B, Abdul-Khaliq H, Hetzer R, Lange PE (2004) Midterm follow-up after extracardiac Fontan operation. Thorac Cardiovasc Surg 52:218–224

    PubMed  CAS  Google Scholar 

  2. Alphonso N, Baghai M, Sundar P, Tulloh R, Austin C, Anderson D (2005) Intermediate-term outcome following the Fontan operation: A survival, functional, and risk-factor analysis. Eur J Cardiothorac Surg 28:529–535

    PubMed  Google Scholar 

  3. Amodeo A, Grigioni M, Oppido G, Daniele C, D’Avenio G, Pedrizzetti G, Giannico S, Filippelli S, Di Donato RM (2002) The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection. J Thorac Cardiovasc Surg 124:471–478

    PubMed  Google Scholar 

  4. Amodeo A, Grigioni M, D’Avenio G, Daniele C, Di Donato RM (2004) The patterns of flow in the total extracardiac cavopulmonary connection. Cardiol Young 14(Suppl 3):53–56

    PubMed  Google Scholar 

  5. Angelini A, Frescura C, Stellin G, Thiene G (1998) Cavopulmonary anastomosis in staging toward Fontan operation: Pathologic substrates. Ann Thorac Surg 66:659–663

    PubMed  CAS  Google Scholar 

  6. Arisawa J, Morimoto S, Ikezoe J, Naitoh H, Yamagami H, Kozuka T, Sano T, Shimazaki Y, Matsuda H (1993) Pulsed Doppler echocardiographic assessment of portal venous flow patterns in patients after the Fontan operation. Br Heart J 69:41–46

    PubMed  CAS  Google Scholar 

  7. Ascuitto RJ, Kydon DW, Ross-Ascuitto NT (2001) Pressure loss from flow energy dissipation: Relevance to Fontan-type modifications. Pediatr Cardiol 22:110–115

    PubMed  CAS  Google Scholar 

  8. Ascuitto RJ, Kydon DW, Ross-Ascuitto NT (2003) Streamlining fluid pathways lessens flow energy dissipation: Relevance to atriocavopulmonary connections. Pediatr Cardiol 24:249–258

    PubMed  CAS  Google Scholar 

  9. Ascuitto RJ, Ross-Ascuitto NT (2004) Systematic-to-pulmonary collaterals: A source of flow energy loss in Fontan physiology. Pediatr Cardiol 25:472–481

    PubMed  CAS  Google Scholar 

  10. Azakie A, McCrindle BW, Van Arsdell G, Benson LN, Coles J, Hamilton R, Freedom RM, Williams WG (2001) Extracardiac conduit versus lateral tunnel cavopulmonary connections at a single institution: Impact on outcomes. J Thorac Cardiovasc Surg 122:1219–1228

    PubMed  CAS  Google Scholar 

  11. Bacha EA, Zimmerman FJ, Mor-Avi V, Weinert L, Starr JP, Sugeng L, Lang RM (2004) Ventricular resynchronization by multisite pacing improves myocardial performance in the postoperative single-ventricle patient. Ann Thorac Surg 78:1678–1683

    PubMed  Google Scholar 

  12. Balling G, Vogt M, Kaemmerer H, Eicken A, Meisner H, Hess J (2000) Intracardiac thrombus formation after the Fontan operation. J Thorac Cardiovasc Surg 119:745–751

    PubMed  CAS  Google Scholar 

  13. Be’eri E, Maier SE, Landzberg MJ, Chung T, Geva T (1998) In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation 98:2873–2882

    PubMed  CAS  Google Scholar 

  14. Bernstein D, Naftel D, Chin C, Addonizio LJ, Gamberg P, Blume ED, Hsu D, Canter CE, Kirklin JK, Morrow WR (2006) Outcome of listing for cardiac transplantation for failed Fontan: A multiinstitutional study. Circulation 114:273–280

    PubMed  CAS  Google Scholar 

  15. Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047

    PubMed  Google Scholar 

  16. Brea CA Jr, Smith GW, Muller WH Jr (1966) Experimental hemodynamic evaluation of cavopulmonary anastomosis. Surg Gynecol Obstet 122:77–80

    PubMed  Google Scholar 

  17. Buheitel G, Hofbeck M, Tenbrink U, Leipold G, von der Emde J, Singer H (1997) Changes in pulmonary artery size before and after total cavopulmonary connection. Heart 78:488–492

    PubMed  CAS  Google Scholar 

  18. Bull K (1998) The Fontan procedure: Lessons from the past. Heart 79:213–214

    PubMed  CAS  Google Scholar 

  19. Cavalcanti S, Gnudi G, Masetti P, Ussia GP, Marcelletti CF (2001) Analysis by mathematical model of haemodynamic data in the failing Fontan circulation. Physiol Measure 22:209–222

    CAS  Google Scholar 

  20. Chaudhari M, Sturman J, O’Sullivan J, Smith J, Wrightson N, Parry G, Bolton D, Haynes S, Hamilton L, Hasan A (2005) Rescue cardiac transplantation for early failure of the Fontan-type circulation in children. J Thorac Cardiovasc Surg 129:416–422

    PubMed  Google Scholar 

  21. Cheung YF, Chay GW, Chiu CSW, Cheng LC (2005) Long-term anticoagulation therapy and thromboembolic complications after the Fontan procedure. Int J Cardiol 102:509–513

    PubMed  CAS  Google Scholar 

  22. Cilliers A, Gewillig M (2002) Fontan procedure for univentricular hearts: Have changes in design improved outcome? Cardiovasc J South Africa 13:111–116

    Google Scholar 

  23. Coon PD, Rychik J, Novello RT, Ro PS, Gaynor JW, Spray TL (2001) Thrombus formation after the Fontan operation. Ann Thorac Surg 71:1990–1994

    PubMed  CAS  Google Scholar 

  24. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: A logical alternative to atriopulmonary connection for complex Fontan operations: Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695

    PubMed  Google Scholar 

  25. de Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: Application to the study of competitive flows in cavopulmonary connections. J Thorac Cardiovasc Surg 111:502–513

    PubMed  Google Scholar 

  26. de Zelicourt DA, Pekkan K, Wills L, Kanter K, Forbess J, Sharma S, Fogel M, Yoganathan AP (2005) In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Ann Thorac Surg 79:2094–2102

    PubMed  Google Scholar 

  27. DeGroff C, Birnbaum B, Shandas R, Orlando W, Hertzberg J (2005) Computational simulations of the total cavopulmonary connection: Insights in optimizing numerical solutions. Med Eng Phys 27:135–146

    PubMed  Google Scholar 

  28. DeGroff CG, Carlton JD, Weinberg CE, Ellison MC, Shandas R, Valdes-Cruz L (2002) Effect of vessel size on the flow efficiency of the total cavopulmonary connection: In vitro studies. Pediatr Cardiol 23:171–177

    PubMed  CAS  Google Scholar 

  29. DeGroff CG, Shandas R (2002) Designing the optimal total cavopulmonary connection: Pulsatile versus steady flow experiments. Med Sci Monitor 8:MT41–MT45

    Google Scholar 

  30. Diller G-P, Uebing A, Willson K, Davies LC, Dimopoulos K, Thorne SA, Gatzoulis MA, Francis DP (2006) Analytical identification of ideal pulmonary-systemic flow balance in patients with bidirectional cavopulmonary shunt and univentricular circulation: Oxygen delivery or tissue oxygenation? Circulation 114:1243–1250

    PubMed  Google Scholar 

  31. Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects: Application to the total cavopulmonary connection. J Biomech 29:111–121

    PubMed  CAS  Google Scholar 

  32. Dubini G, Migliavacca F, Pennati G, de Leval MR, Bove EL (2004) Ten years of modelling to achieve haemodynamic optimisation of the total cavopulmonary connection. Cardiol Young 14(Suppl 3):48–52

    PubMed  Google Scholar 

  33. Eicken A, Fratz S, Gutfried C, Balling G, Schwaiger M, Lange R, Busch R, Hess J, Stern H (2003) Hearts late after Fontan operation have normal mass, normal volume, and reduced systolic function: A magnetic resonance imaging study. J Am Coll Cardiol 42:1061–1065

    PubMed  Google Scholar 

  34. Ensley AE, Lynch P, Chatzimavroudis GP, Lucas C, Sharma S, Yoganathan AP (1999) Toward designing the optimal total cavopulmonary connection: An in vitro study. Ann Thorac Surg 68:1384–1390

    PubMed  CAS  Google Scholar 

  35. Ensley AE, Ramuzat A, Healy TM, Chatzimavroudis GP, Lucas C, Sharma S, Pettigrew R, Yoganathan AP (2000) Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann Biomed Eng 28:1172–1183

    PubMed  CAS  Google Scholar 

  36. Fogel MA, Donofrio MT, Ramaciotti C, Hubbard AM, Weinberg PM (1994) Magnetic resonance and echocardiographic imaging of pulmonary artery size throughout stages of Fontan reconstruction. Circulation 90:2927–2936

    PubMed  CAS  Google Scholar 

  37. Fogel MA, Weinberg PM, Hoydu A, Hubbard A, Rychik J, Jacobs M, Fellows KE, Haselgrove J (1997) The nature of flow in the systemic venous pathway measured by magnetic resonance blood tagging in patients having the Fontan operation. J Thorac Cardiovasc Surg 114:1032–1041

    PubMed  CAS  Google Scholar 

  38. Fogel MA, Weinberg PM, Rychik J, Hubbard A, Jacobs M, Spray TL, Haselgrove J (1999) Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation 99:1215–1221

    PubMed  CAS  Google Scholar 

  39. Fontan F, Kirklin JW, Fernandez G, Costa F, Naftel DC, Tritto F, Blackstone EH (1990) Outcome after a “perfect” Fontan operation. Circulation 81:1520–1536

    PubMed  CAS  Google Scholar 

  40. Fontan FBE (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248

    Article  PubMed  CAS  Google Scholar 

  41. Fontan FDC, Quaegebeur JM, Ottenkamp J, Sourdille N, Choussat ABG (1983) Repair of tricuspid atresia in 100 patients. J Thorac Cardiovasc Surg 85:647–660

    PubMed  CAS  Google Scholar 

  42. Fox R, McDonald A, Pritchard P (2004) Introduction to fluid mechanics. Wiley, New York

    Google Scholar 

  43. Frommelt PC, Snider AR, Meliones JN, Vermilion RP (1991) Doppler assessment of pulmonary artery flow patterns and ventricular function after the Fontan operation. Am J Cardiol 68:1211–1215

    PubMed  CAS  Google Scholar 

  44. Gerdes A, Kunze J, Pfister G, Sievers HH (1999) Addition of a small curvature reduces power losses across total cavopulmonary connections. Ann Thorac Surg 67:1760–1764

    PubMed  CAS  Google Scholar 

  45. Gerdes A, Benthin U, Sievers HH (2002) Influence of arteriotomy shape on power losses across in vitro cavopulmonary connections. J Cardiovasc Surg 43:787–791

    CAS  Google Scholar 

  46. Gerdes A, Hanke T, Ahrens V, Pfister G, Sievers HH (2002) Does caval aplanarity influence power losses across in vitro cavopulmonary connections? Pediatr Cardiol 23:388–393

    PubMed  CAS  Google Scholar 

  47. Grigioni M, Amodeo A, Daniele C, D’Avenio G, Formigari R, Di Donato RM (2000) Particle image velocimetry analysis of the flow field in the total cavopulmonary connection. Artif Organs 24:946–952

    PubMed  CAS  Google Scholar 

  48. Grigioni M, D’Avenio G, Del Gaudio C, Morbiducci U (2005) Critical issues in studies of flow through the Fontan circuit after 10 years of investigation. Cardiol Young 15(Suppl 3):68–73

    PubMed  Google Scholar 

  49. Guadagni G, Bove EL, Migliavacca F, Dubini G (2001) Effects of pulmonary afterload on the hemodynamics after the hemi-Fontan procedure. Med Eng Phys 23:293–298

    PubMed  CAS  Google Scholar 

  50. Healy TM, Lucas C, Yoganathan AP (2001) Noninvasive fluid dynamic power loss assessments for total cavopulmonary connections using the viscous dissipation function: A feasibility study. J Biomech Eng 123:317–324

    PubMed  CAS  Google Scholar 

  51. Hess J (2001) Long-term problems after cavopulmonary anastomosis: Diagnosis and management. Thorac Cardiovasc Surg 49:98–100

    PubMed  CAS  Google Scholar 

  52. Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Schmidt MR, Kromann O, Sorensen K, Pedersen EM (2003) Effects of exercise and respiration on blood flow in total cavopulmonary connection: A real-time magnetic resonance flow study. Circulation 108:1227–1231

    PubMed  CAS  Google Scholar 

  53. Houlind K, Stenbog EV, Sorensen KE, Emmertsen K, Hansen OK, Rybro L, Hjortdal VE (1999) Pulmonary and caval flow dynamics after total cavopulmonary connection. Heart 81:67–72

    PubMed  CAS  Google Scholar 

  54. Hsia T-Y, Migliavacca F, Pittaccio S, Radaelli A, Dubini G, Pennati G, de Leval M (2004) Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. J Surg Res 116:305–313

    PubMed  Google Scholar 

  55. Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR (2000) Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 102:III148–III153

    PubMed  CAS  Google Scholar 

  56. Hsia TY, Khambadkone S, Redington AN, de Leval MR (2001) Effect of fenestration on the subdiaphragmatic venous hemodynamics in the total cavopulmonary connection. Eur J Cardiothorac Surg 19:785–792

    PubMed  CAS  Google Scholar 

  57. Jacobs ML, Vlahakes GJ, D’Ambra MN, Margolis SF, Magro AE, Rishton M, Buckley MJ, Austen WG (1987) Augmentation of pulmonary blood flow by a right atrial balloon pump after the Fontan operation. Circulation 76:III72–III76

    PubMed  CAS  Google Scholar 

  58. Jahangiri M, Ross DB, Redington AN, Lincoln C, Shinebourne EA (1994) Thromboembolism after the Fontan procedure and its modifications. Ann Thorac Surg 58:1409–1413, discussion 1413–1404

    Article  PubMed  CAS  Google Scholar 

  59. Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, Galantowicz ME, Lamour JM, Quaegebeur JM, Hsu DT (2004) Cardiac transplantation after the Fontan or Glenn procedure. J Am Coll Cardiol 44:2065–2072

    PubMed  Google Scholar 

  60. Kammeraad J, Sreeram N (2004) Acute thrombosis of an extracardiac Fontan conduit. Heart 90:76

    PubMed  CAS  Google Scholar 

  61. Kaulitz R, Luhmer I, Kallfelz HC (1998) Pulsed Doppler echocardiographic assessment of patterns of venous flow after the modified Fontan operation: Potential clinical implications. Cardiol Young 8:54–62

    Article  PubMed  CAS  Google Scholar 

  62. Kaulitz R, Bergman P, Luhmer I, Paul T, Hausdorf G (1999) Instantaneous pressure-flow velocity relations of systemic venous return in patients with univentricular circulation. Heart 82:294–299

    PubMed  CAS  Google Scholar 

  63. Kavarana MN, Pagni S, Recto MR, Sobczyk WL, Yeh JT, Mitchell M, Austin Iii EH (2005) Seven-year clinical experience with the extracardiac pedicled pericardial Fontan operation. Ann Thorac Surg 80:37–43

    PubMed  Google Scholar 

  64. Ketner M, Lucas C, Masters J, Mill M, Lucas W, Sadoff J, Kiser A, Hoffman S, Yoganathan A, Ensley A (1999) Energy gains/losses of normal and Fontan circulations in lambs under varying respiration parameters. Proc Ann Int Conf IEEE Eng Med Biol 1:249

    Google Scholar 

  65. Khunatorn Y, Mahalingam S, DeGroff CG, Shandas R (2002) Influence of connection geometry and SVC–IVC flow rate ratio on flow structures within the total cavopulmonary connection: A numerical study. J Biomech Eng 124:364–377

    PubMed  Google Scholar 

  66. Khunatorn Y, Shandas R, DeGroff C, Mahalingam S (2003) Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions. Ann Biomed Eng 31:810–822

    PubMed  Google Scholar 

  67. Kim S-J, Kim W-H, Lim HG, Lee C-H, Lee JY (2006) Improving results of the Fontan procedure in patients with heterotaxy Syndrome. Ann Thorac Surg 82:1245–1251

    PubMed  Google Scholar 

  68. Kim SH, Park YH, Cho BK (1997) Hemodynamics of the total cavopulmonary connection: An in vitro study. Yonsei Med J 38:33–39

    PubMed  CAS  Google Scholar 

  69. Kim YH, Walker PG, Fontaine AA, Panchal S, Ensley AE, Oshinski J, Sharma S, Ha B, Lucas CL, Yoganathan AP (1995) Hemodynamics of the Fontan connection: An in vitro study. J Biomech Eng 117:423–428

    PubMed  CAS  Google Scholar 

  70. Kresh JY, Brockman SK, Noordergraaf A (1990) Theoretical and experimental analysis of right ventricular bypass and univentricular circulatory support. IEEE Trans Biomed Eng 37:121–127

    PubMed  CAS  Google Scholar 

  71. Kreutzer GGE, Bono H, De Palma C, Laura JP (1973) An operation for the correction of tricuspid atresia. J Thorac Cardiovasc Surg 1973:613–621

    Google Scholar 

  72. Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364

    PubMed  CAS  Google Scholar 

  73. Lardo AC, Webber SA, Friehs I, del Nido PJ, Cape EG (1999) Fluid dynamic comparison of intraatrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg 117:697–704

    PubMed  CAS  Google Scholar 

  74. Lardo AC, Webber SA, Iyengar A, del Nido PJ, Friehs I, Cape EG (1999) Bidirectional superior cavopulmonary anastomosis improves mechanical efficiency in dilated atriopulmonary connections. J Thorac Cardiovasc Surg 118:681–691

    PubMed  CAS  Google Scholar 

  75. Liu Y, Pekkan K, Jones SC, Yoganathan AP (2004) The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. J Biomech Eng 126:594–603

    PubMed  Google Scholar 

  76. Low HT, Chew YT, Lee CN (1993) Flow studies on atriopulmonary and cavopulmonary connections of the Fontan operations for congenital heart defects. J Biomed Eng 15:303–307

    PubMed  CAS  Google Scholar 

  77. Mace L, Dervanian P, Weiss M, Daniel JP, Losay J, Neveux JY (1995) Hemodynamics of different degrees of right heart bypass: Experimental assessment. Ann Thorac Surg 60:1230–1237

    PubMed  CAS  Google Scholar 

  78. Magosso E, Cavalcanti S, Ursino M (2002) Theoretical analysis of rest and exercise hemodynamics in patients with total cavopulmonary connection. Am J Physiol Heart Circulatory Physiol 282:H1018–H1034

    CAS  Google Scholar 

  79. Mair DD, Puga FJ, Danielson GK (2001) The Fontan procedure for tricuspid atresia: Early and late results of a 25-year experience with 216 patients. J Am Coll Cardiol 37:933–939

    PubMed  CAS  Google Scholar 

  80. Marino BS (2002) Outcomes after the Fontan procedure. Curr Opin Pediatr 14:620–626

    PubMed  Google Scholar 

  81. Mastalir ET, Kalil RAK, Horowitz ESK, Wender O, Sant’Anna JR, Prates PR, Nesralla IA (2002) Late clinical outcomes of the Fontan operation in patients with tricuspid atresia. Arq Bras Cardiol 79:56–60

    PubMed  Google Scholar 

  82. Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan A, Lucas CL (2004) The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. J Biomech Eng 126:709–713

    PubMed  CAS  Google Scholar 

  83. Mendelsohn AM, Bove EL, Lupinetti FM, Crowley DC, Lloyd TR, Beekman RH III (1994) Central pulmonary artery growth patterns after the bidirectional Glenn procedure. J Thorac Cardiovasc Surg 107:1284–1290

    PubMed  CAS  Google Scholar 

  84. Michielon G, Parisi F, Di Carlo D, Squitieri C, Carotti A, Buratta M, Di Donato RM (2003) Orthotopic heart transplantation for failing single ventricle physiology. Eur J Cardiothoracic Surg 24:502–510

    Google Scholar 

  85. Migliavacca F, de Leval MR, Dubini G, Pietrabissa R (1996) A computational pulsatile model of the bidirectional cavopulmonary anastomosis: The influence of pulmonary forward flow. J Biomech Eng 118:520–528

    PubMed  CAS  Google Scholar 

  86. Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. Med Eng Phys 19:394–403

    PubMed  CAS  Google Scholar 

  87. Migliavacca F, de Leval MR, Dubini G, Pietrabissa R, Fumero R (1999) Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med Eng Phys 21:187–193

    PubMed  CAS  Google Scholar 

  88. Migliavacca F, Kilner PJ, Pennati G, Dubini G, Pietrabissa R, Fumero R, de Leval MR (1999) Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans Biomed Eng 46:393–399

    PubMed  CAS  Google Scholar 

  89. Migliavacca F, Dubini G, Bove EL, de Leval MR (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: The influence of the inferior caval anastomosis. J Biomech Eng 125:805–813

    PubMed  Google Scholar 

  90. Migliavacca F, Pennati G, Dubini G, de Leval MR (2004) A study of mathematical modeling of the competitions of flow in the cavopulmonary anastomosis with persistent forward flow. Cardiol Young 14(Suppl 3):32–37

    PubMed  Google Scholar 

  91. Milo SHS, Anderson RH. (1980) Hypoplastic left heart syndrome: Can this malformation be treated surgically? Thorax 35:351–354

    PubMed  CAS  Google Scholar 

  92. Minich LL, Tani LY, Olson AL, Orsmond GS, Shaddy RE (1996) Reversal of flow in the left pulmonary artery after cavopulmonary connection. J Am Soc Echocardiogr 9:202–205

    PubMed  CAS  Google Scholar 

  93. Mitchell MB, Campbell DN, Boucek MM (2004) Heart transplantation for the failing Fontan circulation. Semin Thorac Cardiovasc Surg Pediatr Cardiac Surg Annu 7:56–64

    Google Scholar 

  94. Mitchell ME, Ittenbach RF, Gaynor JW, Wernovsky G, Nicolson S, Spray TL (2006) Intermediate outcomes after the Fontan procedure in the current era. J Thorac Cardiovasc Surg 131:172–180

    PubMed  Google Scholar 

  95. Monagle P, Karl TR (2002) Thromboembolic problems after the Fontan operation. Semin Thorac Cardiovasc Surg Pediatr Cardiac Surg Annu 5:36–47

    Google Scholar 

  96. Morales DLS, Dibardino DJ, Braud BE, Fenrich AL, Heinle JS, Vaughn WK, McKenzie ED, Fraser JCD (2005) Salvaging the failing Fontan: Lateral tunnel versus extracardiac conduit. Ann Thorac Surg 80:1445–1452

    PubMed  Google Scholar 

  97. Morgan VL, Graham JTP, Roselli RJ, Lorenz CH (1998) Alterations in pulmonary artery flow patterns and shear stress determined with three-dimensional phase-contrast magnetic resonance imaging in Fontan patients. J Thorac Cardiovasc Surg 116:294–304

    PubMed  CAS  Google Scholar 

  98. Moyle KR, Mallinson GD, Occleshaw CJ, Cowan BR, Gentles TL (2006) Wall shear stress is the primary mechanism of energy loss in the Fontan connection. Pediatr Cardiol 27:309–315

    PubMed  CAS  Google Scholar 

  99. Nathan M, Baird C, Fynn-Thompson F, Almond C, Thiagarajan R, Laussen P, Blume E, Pigula F (2006) Successful implantation of a Berlin heart biventricular assist device in a failing single ventricle. J Thorac Cardiovasc Surg 131:1407–1408

    PubMed  Google Scholar 

  100. Nogaki M, Senzaki H, Masutani S, Kobayashi J, Kobayashi T, Sasaki N, Asano H, Kyo S, Yokote Y (2000) Ventricular energetics in Fontan circulation: Evaluation with a theoretical model. Pediatr Int 42:651–657

    PubMed  CAS  Google Scholar 

  101. Orlando W, Hertzberg J, Shandas R, DeGroff C (2002) Reverse flow in compliant vessels and its implications for the Fontan procedure: Numerical studies. Biomed Sci Instrument 38:321–326

    Google Scholar 

  102. Orlando W, Shandas R, DeGroff C (2006) Efficiency differences in computational simulations of the total cavopulmonary circulation with and without compliant vessel walls. Comput Meth Prog Biomed 81:220–227

    Google Scholar 

  103. Pekkan K, de Zelicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study. Ann Biomed Eng 33:284–300

    PubMed  Google Scholar 

  104. Pekkan K, Frakes D, De Zelicourt D, Lucas CW, Parks WJ, Yoganathan AP (2005) Coupling pediatric ventricle assist devices to the Fontan circulation: Simulations with a lumped-parameter model. ASAIO J 51:618–628

    PubMed  Google Scholar 

  105. Pennati G, Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) A mathematical model of circulation in the presence of the bidirectional cavopulmonary anastomosis in children with a univentricular heart. Med Eng Phys 19:223–234

    PubMed  CAS  Google Scholar 

  106. Pennati G, Migliavacca F, Dubini G, Pietrabissa R, Fumero R, de Leval MR (2000) Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow. J Surg Res 89:43–52

    PubMed  CAS  Google Scholar 

  107. Pennati G, Fiore GB, Lagana K, Fumero R (2004) Mathematical modeling of fluid dynamics in pulsatile cardiopulmonary bypass. Artif Organs 28:196–209

    PubMed  Google Scholar 

  108. Puga FT CM, Hagler DJ (1987) Modifications of the Fontan operation applicable to patients with left atrioventricular valve atresia or single atrioventricular valve. Circulation 76:III53–III60

    PubMed  CAS  Google Scholar 

  109. Rebergen SA, Ottenkamp J, Doornbos J, van der Wall EE, Chin JG, de Roos A (1993) Postoperative pulmonary flow dynamics after Fontan surgery: Assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 21:123–131

    Article  PubMed  CAS  Google Scholar 

  110. Ripoli A, Berti S, Glauber M, Vanini V, Luisi VS, Biagini A (2004) A study of the Fontan circulation and ventricular energetics based on a model. Cardiol Young 14(Suppl 3):11–19

    PubMed  Google Scholar 

  111. Ripoli A, Berti S, Latta DD, Rocca E, Crucean A, Luisi VS (2005) Mathematical modelling of the impact of preoperative hypertrophy on the outcomes of completion of the Fontan circuit. Cardiol Young 15(Suppl 3):57–60

    PubMed  Google Scholar 

  112. Rodefeld MD, Bromberg BI, Schuessler RB, Boineau JP, Cox JL, Huddleston CB (1996) Atrial flutter after lateral tunnel construction in the modified Fontan operation: A canine model. J Thorac Cardiovasc Surg 111:514–526

    PubMed  CAS  Google Scholar 

  113. Rosenthal DN, Friedman AH, Kleinman CS, Kopf GS, Rosenfeld LE, Hellenbrand WE (1995) Thromboembolic complications after Fontan operations. Circulation 92:287–293

    Google Scholar 

  114. Rychik J, Fogel MA, Donofrio MT, Goldmuntz E, Cohen MS, Spray TL, Jacobs ML (1997) Comparison of patterns of pulmonary venous blood flow in the functional single ventricle heart after operative aortopulmonary shunt versus superior cavopulmonary shunt. Am J Cardiol 80:922–926

    PubMed  CAS  Google Scholar 

  115. Rydberg A, Teien DE, Krus P (1997) Computer simulation of circulation in patient with total cavopulmonary connection: Interrelationship of cardiac and vascular pressure, flow, resistance, and capacitance. Med Biol Eng Comput 35:722–728

    PubMed  CAS  Google Scholar 

  116. Ryu K, Healy TM, Ensley AE, Sharma S, Lucas C, Yoganathan AP (2001) Importance of accurate geometry in the study of the total cavopulmonary connection: Computational simulations and in vitro experiments. Ann Biomed Eng 29:844–853

    PubMed  CAS  Google Scholar 

  117. Salzer-Muhar U, Marx M, Ties M, Proll E, Wimmer M (1994) Doppler flow profiles in the right and left pulmonary artery in children with congenital heart disease and a bidirectional cavopulmonary shunt. Pediatr Cardiol 15:302–307

    PubMed  CAS  Google Scholar 

  118. Santamore WP, Barnea O, Riordan CJ, Ross MP, Austin EH (1998) Theoretical optimization of pulmonary-to-systemic flow ratio after a bidirectional cavopulmonary anastomosis. Am J Physiol Heart Circ Physiol 274:H694–H700

    CAS  Google Scholar 

  119. Seidenberg J, Motz R (2002) Successful treatment using heparin of the bronchial cast syndrome after the Fontan procedure.comment. Cardiol Young 12:85–86, author reply 87

    PubMed  Google Scholar 

  120. Senzaki H, Naito C, Kobayashi T, Sasaki N, Kyo S, Yokote Y, Ishizawa A (2000) Influence of age (body size) on the Fontan circulation: Analysis by a theoretical model. Jpn Circulation J 64:943–948

    CAS  Google Scholar 

  121. Senzaki H, Masutani S, Ishido H, Taketazu M, Kobayashi T, Sasaki N, Asano H, Katogi T, Kyo S, Yokote Y (2006) Cardiac rest and reserve function in patients with Fontan circulation. J Am Coll Cardiol 47:2528–2535

    PubMed  Google Scholar 

  122. Sharma S, Goudy S, Walker P, Panchal S, Ensley A, Kanter K, Tam V, Fyfe D, Yoganathan A (1996) In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol 27:1264–1269

    PubMed  CAS  Google Scholar 

  123. Sharma S, Ensley AE, Hopkins K, Chatzimavroudis GP, Healy TM, Tam VKH, Kanter KR, Yoganathan AP (2001) In vivo flow dynamics of the total cavopulmonary connection from three-dimensional multislice magnetic resonance imaging. Ann Thorac Surg 71:889–898

    PubMed  CAS  Google Scholar 

  124. Shirai LK, Rosenthal DN, Reitz BA, Robbins RC, Dubin AM (1998) Arrhythmias and thromboembolic complications after the extracardiac Fontan operation. J Thorac Cardiovasc Surg 115:499–505

    PubMed  CAS  Google Scholar 

  125. Sievers H-H, Gerdes A, Kunze J, Pfister G (1998) Superior hydrodynamics of a modified cavopulmonary connection for the Norwood operation. Ann Thorac Surg 65:1741–1745

    PubMed  CAS  Google Scholar 

  126. Sleeper LA, Anderson P, Hsu TD, Mahony L, McCrindle BW, Roth SJ, Saul JP, Williams RV, Geva T, Colan SD (2006) Design of a large cross-sectional study to facilitate future clinical trials in children with the Fontan palliation. Am Heart J 152:427–433

    PubMed  Google Scholar 

  127. Socci L, Gervaso F, Migliavacca F, Pennati G, Dubini G, Ait-Ali L, Festa P, Amoretti F, Scebba L, Luisi VS (2005) Computational fluid dynamics in a model of the total cavopulmonary connection reconstructed using magnetic resonance images. Cardiol Young 15(Suppl 3):61–67

    PubMed  Google Scholar 

  128. Sundareswaran KS, Kanter KR, Kitajima HD, Krishnankutty R, Sabatier JF, Parks WJ, Sharma S, Yoganathan AP, Fogel M (2006) Impaired power output and cardiac index with hypoplastic left heart syndrome: A magnetic resonance imaging study. Ann Thorac Surg 82:1267–1277

    PubMed  Google Scholar 

  129. Szabo G, Buhmann V, Graf A, Melnitschuk S, Bahrle S, Vahl CF, Hagl S (2003) Ventricular energetics after the Fontan operation: Contractility–afterload mismatch. J Thorac Cardiovasc Surg 125:1061–1069

    PubMed  Google Scholar 

  130. Tamaki S, Kawazoe K, Yagihara T, Abe T (1992) A model to simulate the haemodynamic effects of right heart pulsatile flow after modified Fontan procedure. Br Heart J 67:177–179

    PubMed  CAS  Google Scholar 

  131. van den Bosch AE, Roos-Hesselink JW, Van Domburg R, Bogers AJJC, Simoons ML, Meijboom FJ (2004) Long-term outcome and quality of life in adult patients after the Fontan operation. Am J Cardiol 93:1141–1145

    PubMed  Google Scholar 

  132. van Haesdonck J-M, Mertens L, Sizaire R, Montas G, Purnode B, Daenen W, Crochet M, Gewillig M (1995) Comparison by computerized numeric modeling of energy losses in different Fontan connections. Circulation 92:322–326

    Google Scholar 

  133. Walker PG, Howe TT, Davies RL, Fisher J, Watterson KG (2000) Distribution of hepatic venous blood in the total cavopulmonary connection: An in vitro study. Eur J Cardiothorac Surg 17:658–665

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. DeGroff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGroff, C.G. Modeling the Fontan Circulation: Where We Are and Where We Need to Go. Pediatr Cardiol 29, 3–12 (2008). https://doi.org/10.1007/s00246-007-9104-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-007-9104-0

Keywords

Navigation