Skip to main content

Advertisement

Log in

Toward Optimal Hemodynamics: Computer Modeling of the Fontan Circuit

Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The construction of efficient designs with minimal energy losses is especially important for cavopulmonary connections. The science of computational fluid dynamics has been increasingly used to study the hemodynamic performance of surgical operations. Three-dimensional computer models can be accurately constructed of typical cavopulmonary connections used in clinical practice based on anatomic data derived from magnetic resonance scans, angiocardiograms, and echocardiograms. Using these methods, the hydraulic performance of the hemi-Fontan, bidirectional Glenn, and a variety of types of completion Fontan operations can be evaluated and compared. This methodology has resulted in improved understanding and design of these surgical operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Bove EL, de Leval MR, Migliavacca F, Gaudagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047

    Article  PubMed  Google Scholar 

  2. Bove EL, Lloyd TR (1996) Staged reconstruction for hypoplastic left heart syndrome: contemporary results. Ann Surg 224:387–395

    Article  PubMed  CAS  Google Scholar 

  3. de Leval MR, Dubini G, Migliavacca F, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg 111:502–513

  4. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695

    PubMed  Google Scholar 

  5. Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J Biomech 29:111–121

    Article  PubMed  CAS  Google Scholar 

  6. Ensley AE, Lynch P, Chatzimavroudis GP, et al. (1999) Toward designing the optimal total cavopulmonary connection: an in vitro study. Ann Thorac Surg 68:1384–1390

    Article  PubMed  CAS  Google Scholar 

  7. Gerdes A, Kunze J, Pfister G, Sievers HH (1999) Addition of a small curvature reduces power losses across total cavopulmonary connections. Ann Thorac Surg 67:1760–1764

    Article  PubMed  CAS  Google Scholar 

  8. Guadagni G, Migliavacca F, Dubini G, Bove EL (2001) Effects of pulmonary afterload on the hemodynamics after the hemi-Fontan procedure. Med Eng Phys 23:293–298

    Article  PubMed  CAS  Google Scholar 

  9. Khunatorn Y, Mahalingam S, DeGroff CG, Shandas R (2002) Influence of connection geometry and SVC–IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J Biomech Eng 124:364–377

    Article  PubMed  Google Scholar 

  10. Kim YH, Walker PG, Fontaine AA et al. (1995) Hemodynamics of the Fontan connection: an in-vitro study. J Biomech Eng 117:423–428

    PubMed  CAS  Google Scholar 

  11. Lardo AC, Webber SA, Friehs I, del Nido PJ, Cape EG (1999) Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg 117:697–704

    Article  PubMed  CAS  Google Scholar 

  12. Lardo AC, Webber SC, Iyengar A (1999) Bidirectional superior cavopulmonary anastomosis improves mechanical efficiency in dilated atriopulmonary connections. J Thorac Cardiovasc Surg 188:681–691

    Article  Google Scholar 

  13. Low HT, Chew YT, Lee CN (1993) Flow studies on atriopulmonary and cavopulmonary connections of the Fontan operations for congenital heart defects. J Biomed Eng 15:303–307

    Article  PubMed  CAS  Google Scholar 

  14. Migliavacca F, de Leval MR, Dubini G, Pietrabissa R (1996) A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J Biomech Eng 118:520–528

    PubMed  CAS  Google Scholar 

  15. Migliavacca F, de Leval MR, Dubini G, Pietrabissa R, Fumero R (1999) Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med Eng Phys 23:187–193

    Article  Google Scholar 

  16. Migliavacca F, Dubini G, Bove EL, de Leval MR (2003) Computational fluid dynamics in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:805–813

    Article  PubMed  Google Scholar 

  17. Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. Med Eng Phys 19:394–403

    Article  PubMed  CAS  Google Scholar 

  18. Migliavacca F, Kilner PJ, Pennati G, et al. (1999) Comparison between computational fluid dynamic and magnetic resonance analyses on a case of total cavopulmonary connection. IEEE Trans Biomed Eng 46:393–399

    Article  PubMed  CAS  Google Scholar 

  19. Sharma S, Ensley AE, Hopkins K et al. (2001) In vivo flow dynamics of the total cavopulmonary connection from three-dimensional multislice magnetic resonance imaging. Ann Thorac Surg 71:889–898

    Article  PubMed  CAS  Google Scholar 

  20. Sharma S, Goudy S, Walker P et al. (1996) In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol 27:1264–1269

    Article  PubMed  CAS  Google Scholar 

  21. Sievers HH, Gerdes A, Kunze J, Pfister G (1998) Superior hydrodynamics of a modified cavopulmonary connection for the Norwood operation. Ann Thorac Surg 65:1741–1745

    Article  PubMed  CAS  Google Scholar 

  22. Van Haesdonck JM, Mertens L, Sizaire R et al. (1995) Comparison by computerized numeric modeling of energy losses in different Fontan connections. Circulation 92(9 Suppl):II322–II326

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Bove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bove, E.L., de Leval, M.R., Migliavacca, F. et al. Toward Optimal Hemodynamics: Computer Modeling of the Fontan Circuit. Pediatr Cardiol 28, 477–481 (2007). https://doi.org/10.1007/s00246-007-9009-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-007-9009-y

Keywords

Navigation