Skip to main content
Log in

Machine Learning Architectures for Price Formation Models

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achdou, Y., Cardaliaguet, P., Delarue, F., Porretta, A., Santambrogio, F.: Mean Field Games: Cetraro, Italy 2019. Lecture Notes in Mathematics. Springer, Cham (2021)

    Google Scholar 

  3. Aduamoah, M., Goddard, B.D., Pearson, J.W., Roden, J.C.: Pseudospectral methods and iterative solvers for optimization problems from multiscale particle dynamics. BIT Numer. Math. 62(4), 1703–1743 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aïd, R., Cosso, A., Pham, H.: Equilibrium price in intraday electricity markets (2020)

  5. Aïd, R., Dumitrescu, R., Tankov, P.: The entry and exit game in the electricity markets: a mean-field game approach. J. Dyn. Games 8(4), 331–358 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alasseur, C., Campi, L., Dumitrescu, R., Zeng, J.: Mfg model with a long-lived penalty at random jump times: application to demand side management for electricity contracts (2021)

  7. Alasseur, C., Ben Taher, I., Matoussi, A.: An extended mean field game for storage in smart grids. J. Optim. Theory Appl. 184(2), 644–670 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alharbi, A., Bakaryan, T., Cabral, R., Campi, S., Christoffersen, N., Colusso, P., Costa, O., Duisembay, S., Ferreira, R., Gomes, D. A., Guo, S., Gutierrez Pineda, J., Havor, P., Mascherpa, M., Portaro, S., Ribeiro, R. d. L., Rodriguez, F., Ruiz, J., Saleh, F., Strange, C., Tada, T., Yang, X., Wróblewska, Z.: A price model with finitely many agents. Bull. Portuguese Math. Soc. (2019)

  9. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units (2018)

  10. Ashrafyan, Y., Bakaryan, T., Gomes, D., Gutierrez, J.: The potential method for price-formation models (2022)

  11. Basar, T., Srikant, R.: Revenue-maximizing pricing and capacity expansion in a many-users regime. In Proceedings of the twenty-first annual joint conference of the IEEE computer and communications societies, vol. 1, pp. 294–301 (2002)

  12. Benamou, J.-D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.: Eds., vol. 31, Curran Associates, Inc

  14. Bensoussan, A., Han, J., Yam, S.C.P., Zhou, X.: Value-gradient based formulation of optimal control problem and machine learning algorithm (2021)

  15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Briceño Arias, L.M., Kalise, D., Silva, F.J.: Proximal methods for stationary mean field games with local couplings. SIAM J. Control. Optim. 56(2), 801–836 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Campbell, S., Chen, Y., Shrivats, A., Jaimungal, S.: Deep learning for principal-agent mean field games (2021)

  18. Cao, H., Guo, X., Laurière, M.: Connecting GANs, MFGs, and OT (2021)

  19. Carlini, E., Silva, F.J.: A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52(1), 45–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carmona, R., Laurière, M.: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games II: the finite horizon case. Ann. Appl. Probab. (2021)

  21. Carmona, R., Laurière, M.: Deep learning for mean field games and mean field control with applications to finance. Mach. Learning Data Sci. Financial Mark. arXiv:2107.04568 (2021)

  22. Carmona, R., Laurière, M.: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games I: the ergodic case. SIAM J. Numer. Anal. 59(3), 1455–1485 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In Advances in Neural Information Processing Systems (2018)

  24. Chen, X., Wang, J., Ge, H.: Training generative adversarial networks via primal-dual subgradient methods: a Lagrangian perspective on GAN (2018)

  25. Djehiche, B., Barreiro-Gomez, J., Tembine, H.: Price Dynamics for Electricity in Smart Grid Via Mean-Field-Type Games. Dynamic Games and Applications 10(4), 798–818 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Monographs in Mathematics, 1st edn. Springer, Cham (2009)

    Book  MATH  Google Scholar 

  27. Effati, S., Pakdaman, M.: Optimal control problem via neural networks. Neural Comput. Appl. 23(7), 2093–2100 (2013)

    Article  Google Scholar 

  28. Féron, O., Tankov, P., Tinsi, L.: Price formation and optimal trading in intraday electricity markets (2021)

  29. Féron, O., Tankov, P., Tinsi, L.: Price formation and optimal trading in intraday electricity markets with a major player. Risks 8(4), 1–1 (2020)

    Article  MATH  Google Scholar 

  30. Fouque, J.-P., Zhang, Z.: Deep learning methods for mean field control problems with delay. Front. Appl. Math. Stat. 6, 11 (2020)

    Article  Google Scholar 

  31. Fujii, M., Takahashi, A.: A mean field game approach to equilibrium pricing with market clearing condition. Papers arXiv:2003.03035 (2020)

  32. Fujii, M., Takahashi, A.: Equilibrium price formation with a major player and its mean field limit (2021)

  33. Gomes, D., Saúde, J.A.: A mean-field game approach to price formation. Dyn. Games Appl. 11(1), 29–53 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gomes, D., Lafleche, L., Nurbekyan, L.: A mean-field game economic growth model. Proc. Am. Control Conf. 2016, 4693–4698 (2016)

    Google Scholar 

  35. Gomes, D., Gutierrez, J., Ribeiro, R.: A random-supply mean field game price model (2021)

  36. Gomes, D., Gutierrez, J., Ribeiro, R.: A mean field game price model with noise. Math. Eng. 3, 14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hadikhanloo, S., Silva, F.J.: Finite mean field games: fictitious play and convergence to a first order continuous mean field game. Journal de Mathématiques Pures et Appliquées 132, 369–397 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Han, J.: Deep learning approximation for stochastic control problems (2016)

  39. Han, J., Hu, R.: Recurrent neural networks for stochastic control problems with delay (2021)

  40. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 770–778 (2016)

  41. He, J., Li, L., Xu, J., Zheng, C.: Relu deep neural networks and linear finite elements. J. Comput. Math. 38(3), 502–527 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Higham, C., Higham, D.: Deep learning: an introduction for applied mathematicians. SIAM Rev. 61(4), 860–891 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Article  Google Scholar 

  44. Laurière, M.: Numerical methods for mean field games and mean field type control (2021)

  45. Laurière, M., Perrin, S., Geist, M., Pietquin, O.: Learning mean field games: a survey (2022)

  46. Lin, A.T., Fung, S.W., Li, W., Nurbekyan, L., Osher, S.J.: Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games. Proc. Natl. Acad. Sci. USA 118, 31 (2021)

    Article  MathSciNet  Google Scholar 

  47. Malanowski, K.: Stability and sensitivity of solutions to nonlinear optimal control problems. Appl. Math. Optim. 32(2), 111–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Malanowski, K.: Two Norm Approach in Stability Analysis of Optimization and Optimal Control Problems, pp. 2557–2568. De Gruyter, Berlin (1996)

    MATH  Google Scholar 

  49. Min, M., Hu, R.: Signatured deep fictitious play for mean field games with common noise (2021)

  50. Mou, C., Yang, X., Zhou, C.: Numerical methods for mean field games based on gaussian processes and Fourier features (2021)

  51. Quincampoix, M., Veliov, V.M.: Metric regularity and stability of optimal control problems for linear systems. SIAM J. Control. Optim. 51(5), 4118–4137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Quincampoix, M., Scarinci, T., Veliov, V.M.: On the metric regularity of affine optimal control problems. J. Convex Anal. 27(2), 511–535 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Ruthotto, L., Osher, S., Li, W., Nurbekyan, L., Fung, S.W.: A machine learning framework for solving high-dimensional mean field game and mean field control problems (2020)

  54. Ryu, E.K., Boyd, S.P.: A primer on monotone operator methods

  55. Sánchez-Sánchez, C., Izzo, D.: Real-time optimal control via deep neural networks: study on landing problems. J. Guid. Control. Dyn. 41(5), 1122–1135 (2018)

    Article  Google Scholar 

  56. Shen, H., Basar, T.: Pricing under information asymmetry for a large population of users. Telecommun. Syst. 47(1–2), 123–136 (2011)

    Article  Google Scholar 

  57. Shrivats, A., Firoozi, D., Jaimungal, S.: A mean-field game approach to equilibrium pricing, optimal generation, and trading in solar renewable energy certificate markets. Papers arXiv:2003.04938v5 (2020)

  58. Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Beijing International Center for Mathematical Research, the Elite Program of Computational and Applied Mathematics for PhD Candidates of Peking University, NSFC Grant 91430215, NSF Grants DMS-1522615 and DMS-1819157. Publisher Copyright: © 2020 Global Science Press. All rights reserved.

Funding

The authors were partially supported by King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Gutierrez.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by King Abdullah University of Science and Technology (KAUST) baseline funds and KAUST OSR-CRG2021-4674.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, D., Gutierrez, J. & Laurière, M. Machine Learning Architectures for Price Formation Models. Appl Math Optim 88, 23 (2023). https://doi.org/10.1007/s00245-023-10002-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10002-8

Keywords

Mathematics Subject Classification

Navigation