Skip to main content
Log in

Bang–Bang Control of a Prey–Predator Model with a Stable Food Stock and Hysteresis

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

A nonlinear partial differential control system is considered. This system arises, for instance, when modeling the evolution of populations in the vegetation–prey–predator framework. Our system accounts for the situation when the dependence of the vegetation density on the densities of prey and predators exhibits hysteretic character. At the same time, we do not allow for the diffusion of vegetation which is a reasonable assumption in many biological models of practical interest. Under a minimal set of requirements on the functions defining the hysteresis region, we first prove the existence of a solution to the corresponding (uncontrolled) system. Then, the existence of solutions for the control system is established and the bang–bang principle for it is obtained. The latter asserts the proximity of extremal solutions to a given solution of the control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Visintin, A.: Differential Models of Hysteresis. Appl. Math. Sci., vol. 111, Springer, Berlin (1994)

  2. Kenmochi, N., Koyama, T., Meyer, G.H.: Parabolic PDEs with hysteresis and quasivariational inequalities. Nonlinear Anal. 34, 665–686 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Krejčí, P., Sprekels, J.: A hysteresis approach to phase-field models. Nonlinear Anal. 39(5), 569–586 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colli, P., Kenmochi, N., Kubo, M.: A phase field model with temperature dependent constraint. J. Math. Anal. Appl. 256, 668–685 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kenmochi, N., Sprekels, J.: Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Commun. Pure Appl. Anal. 1(4), 495–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Krejčí, P., Tolstonogov, A.A., Timoshin, S.A.: A control problem in phase transition modeling. Nonlinear Differ. Equ. Appl. 22(4), 513–542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Helmers, M., Herrmann, M.: Hysteresis and phase transitions in a lattice regularization of an ill-posed forward-backward diffusion equation. Arch. Ration. Mech. Anal. 230(1), 231–275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kubo, M.: A filtration model with hysteresis. J. Differ. Equ. 201, 75–98 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krejčí, P., O’Kane, J.P., Pokrovskii, A., Rachinskii, D.: Properties of solutions to a class of differential models incorporating Preisach hysteresis operator. Physica D 241, 2010–2028 (2012)

    Article  MathSciNet  Google Scholar 

  10. Albers, B.: Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review. Acta Mech. 225(8), 2163–2189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Detmann, B., Krejčí, P., Rocca, E.: Solvability of an unsaturated porous media flow problem with thermomechanical interaction. SIAM J. Math. Anal. 48(6), 4175–4201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krejčí, P., Timoshin, S.A.: Coupled ODEs control system with unbounded hysteresis region. SIAM J. Control Optim. 54(4), 1934–1949 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kopfová, J., Kopf, T.: Differential equations, hysteresis, and time delay. Z. Angew. Math. Phys. 53(4), 676–691 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Logemann, H., Ryan, E.P., Shvartsman, I.: A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions. Nonlinear Anal. 69(1), 363–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurevich, P., Ron, E.: Stability of periodic solutions for hysteresis-delay differential equations. J. Dyn. Differ. Equ. 31(4), 1873–1920 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Timoshin, S.A.: Control system with hysteresis and delay. Syst. Control Lett. 91, 43–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aiki, T., Kumazaki, K.: Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process. Phys. B 407, 1424–1426 (2012)

    Article  Google Scholar 

  18. Aiki, T., Kumazaki, K.: Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials. Netw. Heterog. Med. 9(4), 683–707 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Aiki, T., Timoshin, S.A.: Relaxation for a control problem in concrete carbonation modeling. SIAM J. Control Optim. 55(6), 3489–3502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Timoshin, S.A., Aiki, T.: Extreme solutions in control of moisture transport in concrete carbonation. Nonlinear Anal. Real World Appl. 47, 446–459 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Visintin, A.: Evolution problems with hysteresis in the source term. SIAM J. Math. Anal. 17, 1113–1138 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aiki, T., Minchev, E.: A prey-predator model with hysteresis effect. SIAM J. Math. Anal. 36(6), 2020–2032 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aiki, T., Kopfová, J.: A Mathematical Model for Bacterial Growth Described by a Hysteresis Operator. Recent Advances in Nonlinear Analysis, pp. 1–10. World Sci. Publ, Hackensack (2008)

    MATH  Google Scholar 

  24. Gurevich, P., Shamin, R., Tikhomirov, S.: Reaction-diffusion equations with spatially distributed hysteresis. SIAM J. Math. Anal. 45(3), 1328–1355 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Timoshin, S.A., Aiki, T.: Control of biological models with hysteresis. Syst. Control Lett. 128, 41–45 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Timoshin, S.A., Aiki, T.: Relaxation in population dynamics models with hysteresis. SIAM J. Control Optim. 59(1), 693–708 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Colli, P., Sprekels, J.: On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl. IV. Ser. 169, 269–289 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gilardi, G., Rocca, E.: Convergence of phase field to phase relaxation models governed by an entropy equation with memory. Math. Methods Appl. Sci. 29(18), 2149–2179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bin, M.J., Liu, Z.H.: Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Anal. Real World Appl. 50, 613–632 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bin, M.J., Liu, Z.H.: On the “bang-bang’’ principle for nonlinear evolution hemivariational inequalities control systems. J. Math. Anal. Appl. 480(1), 21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Van Chuong, Phan: A density theorem with an application in relaxation of non-convex-valued differential equations. J. Math. Anal. Appl. 124, 1–14 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Timoshin.

Ethics declarations

Conflict of interest

The author has no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the author was partially supported by National Natural Science Foundation of China (12071165 and 62076104) and Natural Science Foundation of Fujian Province (2020J01072).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshin, S.A. Bang–Bang Control of a Prey–Predator Model with a Stable Food Stock and Hysteresis. Appl Math Optim 88, 26 (2023). https://doi.org/10.1007/s00245-023-09984-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09984-2

Keywords

Mathematics Subject Classification

Navigation