Skip to main content
Log in

Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we investigate homogenization results for the principal eigenvalue problem associated to 1-homogeneous, uniformly elliptic, second-order operators. Under rather general assumptions, we prove that the principal eigenpair associated to an oscillatory operator converges to the eigenpair associated to the effective one. This includes the case of fully nonlinear operators. Rates of convergence for the eigenvalues are provided for linear and nonlinear problems, under extra regularity/convexity assumptions. Finally, a linear rate of convergence (in terms of the oscillation parameter) of suitably normalized eigenfunctions is obtained for linear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, O., Bardi, M., Marchi, C.: Multiscale problems and homogenization for second-order Hamilton-Jacobi equations. J. Differ. Equ. 243, 349–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, S.: Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations. J. Diff. Eq. 246(7), 2958–2987 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, S.: The Dirichlet problem for the Bellman equations at resonance. J. Diff. Eq. 247, 931–955 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardi, M., Da Lio, F.: On the strong maximum principle for fully nonlinear degenerate elliptic equations arch. Math (Basel) 73(4), 276–285 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Nirenberg, L., Varadhan, S.: The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birindelli, I., Demengel, F.: First eigenvalue and maximum principle for fully nonlinear singular operators. Adv. Differ. Equ. 11, 91–119 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Souganidis, P.E.: Rates of convergence for the homogenization of fully nonlinear uniformly elliptic PDE in random media. Invent. Math. 180(2), 301–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Caffarelli, L.: Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence, RI (1995)

  9. Camilli, F., Marchi, C.: Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic pdes. Nonlinearity 22(6), 1481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capuzzo-Dolcetta, I., Ishii, H.: On the rate of convergence in homogenization of Hamilton-Jacobi equations. Indiana Univ. Math. J. (2001). https://doi.org/10.1512/iumj.2001.50.1933

    Article  MathSciNet  MATH  Google Scholar 

  11. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second-order elliptic differential operators. Comm. Pure Appl. Math. 29(6), 595–621 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, L.C.: Periodic homogeneization of certain fully nonlinear partial differential equations Proc. R. Soc. Edinb. A 120, 245–265 (1992)

    Article  Google Scholar 

  13. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleming, W.H., Souganidis, P.: On the existence of value functions of two-player, zero sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishii, H., Lions, P.L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83, 26–78 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kesavan, S.: Homogenization of elliptic eigenvalue problems. I. Appl. Math. Optim. 5(2), 153–167 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 487–523 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Kim, S., Lee, K.-A.: Higher order convergence rates in theory of homogenization: equations of non-divergence form. Arch. Rational Mech. Anal. 2016, 1273–1304 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogeneization of Hamilton-Jacobi equations. Unpublished, (1986)

  20. Osborn, O.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quaas, A., Sirakov, B.: Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic ooperators. Adv. Math. 218(1), 105–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Silvestre, L., Sirakov, B.: Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Commun. Partial Differ. Equ. 39, 1694–1717 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Trudinger, Neil S.: Hölder gradient estimates for fully nonlinear elliptic equations. Proceedings of the Royal Society of Edinburgh, 108A, 57-65, (1988)

Download references

Acknowledgements

We wish to express our gratitude to the anonymous referee for the thorough review of a previous version of this article. Their remarks and revisions allowed us to improve our results to a greater generality and also make the presentation clearer.

Funding

A. R.-P. was partially supported by Fondecyt Grant Postdoctorado Nacional No.  3190858. G. D. was partially supported by Fondecyt Grant No. 1190209. E. T. was partially supported by Fondecyt Grant No. 1201897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Topp.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dávila, G., Rodríguez-Paredes, A. & Topp, E. Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators. Appl Math Optim 88, 5 (2023). https://doi.org/10.1007/s00245-023-09979-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09979-z

Keywords

Navigation