Skip to main content
Log in

Decomposition of Convex High Dimensional Aggregative Stochastic Control Problems

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider the framework of convex high dimensional stochastic control problems, in which the controls are aggregated in the cost function. As first contribution, we introduce a modified problem, whose optimal control is under some reasonable assumptions an \(\varepsilon \)-optimal solution of the original problem. As second contribution, we present a decentralized algorithm whose convergence to the solution of the modified problem is established. Finally, we study the application of the developed tools in an engineering context, studying a coordination problem for large populations of domestic thermostatically controlled loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barty, K., Carpentier, P., Girardeau, P.: Decomposition of large-scale stochastic optimal control problems. RAIRO Op. Res. 44(3), 167–183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D., Shreve, S.E.: Stochastic optimal control: the discrete-time case, vol. 5. Athena Scientific, Amsterdam (1996)

    MATH  Google Scholar 

  3. Frédéric Bonnans, J., Shapiro, A.: Perturbation analysis of optimization problems. Springer, Cham (2013)

    MATH  Google Scholar 

  4. Brown, D.B., Smith, J.E., Sun, P.: Information relaxations and duality in stochastic dynamic programs. Op. Res. 58(4–part–1), 785–801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carpentier, P., Chancelier, J.P., Leclère, V., Pacaud, F.: Stochastic decomposition applied to large-scale hydro valleys management. Euro. J. Op. Res. 270(3), 1086–1098 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carpentier, P., Chancelier, J.-P., De Lara, M., Pacaud, F.: Mixed spatial and temporal decompositions for large-scale multistage stochastic optimization problems. J. Optimiz. Theory Appl. 186(3), 985–1005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chertkov, M., Chernyak, V.: Ensemble of thermostatically controlled loads: statistical physics approach. Sci. Rep. 7(1), 8673 (2017)

    Article  Google Scholar 

  8. De Paola, A., Trovato, V., Angeli, D., Strbac, G.: A mean field game approach for distributed control of thermostatic loads acting in simultaneous energy-frequency response markets, IEEE Transactions on Smart Grid PP, 1 (2019)

  9. Duflo, M.: Random iterative models, vol. 34. Springer, Cham (2013)

    Google Scholar 

  10. Geiersbach, C., Pflug, G.C.: Projected stochastic gradients for convex constrained problems in Hilbert spaces. SIAM J. Optimiz. 29(3), 2079–2099 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girardeau, P.: Solving large-scale dynamic stochastic optimization problems, PhD thesis, Université Paris-Est, (December 2010)

  12. Hao, H., Sanandaji, B.M., Poolla, K., Vincent, T.L.: Aggregate flexibility of thermostatically controlled loads. IEEE Trans. Power Syst. 30(1), 189–198 (2014)

    Article  Google Scholar 

  13. Higle, J.L., Sen, S.: Stochastic decomposition: a statistical method for large scale stochastic linear programming, vol. 8. Springer, Cham (2013)

    MATH  Google Scholar 

  14. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of convex analysis. Springer, Cham (2004)

    MATH  Google Scholar 

  15. Kizilkale, A.C., Salhab, R., Malhamé, R.P.: An integral control formulation of mean field game based large scale coordination of loads in smart grids. Automatica 100, 312–322 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuhn, D., Wiesemann, W., Georghiou, A.: Primal and dual linear decision rules in stochastic and robust optimization. Math. Progr. 130(1), 177–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kundur, P., Balu, N.J., Lauby, M.G.: Power system stability and control, vol. 7. McGraw-hill, New York (1994)

    Google Scholar 

  18. Leclere, V.: Contributions to decomposition methods in stochastic optimization, PhD thesis, Université Paris-Est, (June 2014)

  19. Leclere, V., Carpentier, P., Chancelier, J.-P., Lenoir, A., Pacaud, F.: Exact converging bounds for stochastic dual dynamic programming via fenchel duality. SIAM J. Optimiz. 30(2), 1223–1250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao, X.: Stochastic differential equations and applications. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  21. Pacaud, F.: Decentralized optimization for energy efficiency under stochasticity, PhD thesis, Université Paris-Est, (October 2018)

  22. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Progr. 52(1–3), 359–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pérez-Aros, P., Vilches, E.: An enhanced Baillon-Haddad Theorem for convex functions defined on convex sets. Appl. Math. Optimiz. 83(3), 2241–2252 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Philpott, A.B., Guan, Z.: On the convergence of stochastic dual dynamic programming and related methods. Op. Res. Lett. 36(4), 450–455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tyrrell Rockafellar, R., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Op. Res. 16(1), 119–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruszczyński, A., Shapiro, A.: Stochastic programming models. Handbooks in operations research and management science 10, 1–64 (2003)

    Article  MathSciNet  Google Scholar 

  27. Salinger, D.H.: A splitting algorithm for multistage stochastic programming with application to hydropower scheduling, University of Washington (1997)

  28. Short, J.A., Infield, D.G., Freris, L.L.: Stabilization of grid frequency through dynamic demand control. IEEE Trans. Power Syst. 22(3), 1284–1293 (2007)

    Article  Google Scholar 

  29. Teng, F., Trovato, V., Strbac, G.: Stochastic scheduling with inertia-dependent fast frequency response requirements. IEEE Trans. Power Syst. 31(2), 1557–1566 (2015)

    Article  Google Scholar 

  30. Todorov, E.: Optimal control theory, Bayesian brain: probabilistic approaches to neural coding, 269–298 (2006)

  31. Trovato, V., Bialecki, A., Dallagi, A.: Unit commitment with inertia-dependent and multispeed allocation of frequency response services. IEEE Trans. Power Syst. 34(2), 1537–1548 (2018)

    Article  Google Scholar 

  32. Trovato, V., Tindemans, S.H., Strbac, G.: Leaky storage model for optimal multi-service allocation of thermostatic loads. IET Gener. Trans. Distrib. 10(3), 585–593 (2016)

    Article  Google Scholar 

  33. Zhang, S., Andy Sun, X.: Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization. Math. Progr. 196(1), 935–985 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lan, G.: Complexity of stochastic dual dynamic programming. Math. Progr. 191, 717–754 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their useful remarks.

Funding

The first, second, third and fifth author thank the FiME Lab (Institut Europlace de Finance). The third author was supported by the PGMO project “Optimal control of conservation equations", itself supported by iCODE(IDEX Paris-Saclay) and the Hadamard Mathematics LabEx.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Seguret.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Let H be a Hilbert space and \(f:H\rightarrow {\mathbb {R}}\) be l.s.c. and convex. The function f has at most quadratic growth if and only if its subgradient has linear growth.

Proof

Let the subgradient have linear growth, that is, \(\Vert q\Vert _H \le c_1(1+\Vert x \Vert _H)\) whenever \(x \in H\) and \(q\in \partial f(x)\). Then \(f(x) \le f(0) + \langle q, x \rangle _H \le f(0) + \Vert q\Vert _H \Vert x\Vert _H \le c_2 (1+\Vert x \Vert _H^2)\), so that f has at most quadratic growth.

Conversely, let f have at most quadratic growth. Since f is convex, one has for all \(x\in H\) and \(q_0\in \partial f(0)\):

$$\begin{aligned} f(x)\ge f(0) + \langle q_0,x \rangle _H \ge -c_3(1+ \Vert x \Vert _H^2), \end{aligned}$$

where \(c_3>0\) depends only on f(0) and \(q_0\). Then, using the growth assumption on f and the inequality above, one gets for all \(x,y\in H \) and \(q\in \partial f(x)\):

$$\begin{aligned} c_4(1+ \Vert y \Vert _H ^2) \ge f(y) \ge f(x) + \langle q, y-x \rangle _H \ge -c_3(1+\Vert x \Vert _H^2) + \langle q, y-x \rangle _H. \end{aligned}$$

Take \(y = x + \alpha q\), with \(\alpha \in (0,1)\), we get

$$\begin{aligned} 2c_4(1 + \Vert x \Vert _H^2 + \alpha ^2 \Vert q \Vert _H^2)\ge -c_3(1+\Vert x \Vert _H^2) + \alpha \Vert q\Vert _H^2 \end{aligned}$$

so that \(( \alpha - 2c_4\alpha ^2) \Vert q\Vert _H^2 \le (2c_4+c_3)(1+\Vert x \Vert _H^2)\). Take \(\alpha = 1/(4c_4)\), then \(\alpha - 2c_4 \alpha ^2 =1 /(8c_4) >0\) and then

$$\begin{aligned} \Vert q \Vert _H^2\le 8c_4(2c_4+c_3)(1+ \alpha \Vert x\Vert _H^2) \end{aligned}$$

and the conclusion follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seguret, A., Alasseur, C., Bonnans, J.F. et al. Decomposition of Convex High Dimensional Aggregative Stochastic Control Problems. Appl Math Optim 88, 8 (2023). https://doi.org/10.1007/s00245-023-09977-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09977-1

Keywords

Mathematics Subject Classification

Navigation