Skip to main content
Log in

Uniform Decay Rates for a Variable-Coefficient Structural Acoustic Model with Curved Interface on a Shallow Shell

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

Uniform stabilization of a structural acoustic model describing an acoustic chamber with flexible curved wall is addressed. The coupled nonlinear system consists of a variable-coefficient wave equation and a shallow shell model which is used to model the flexible curved wall (interface). The coupling between the wave and the shell takes place on the interface. Derivation of stability estimates for the variable-coefficient coupled system with the shallow shell depends on the Riemannian geometry method and the multiplier technique. The uniform energy decay rates of the overall interactive model are achieved by introducing nonlinear boundary feedbacks applied to the wave equation and the shell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avalos, G., Toundykov, D.: Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate. Nonlinear Anal. RWA 12, 2985–3013 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Becklin, A.R., Rammaha, M.A.: Hadamard well-posedness for a structure acoustic model with a supercritical source and damping terms. Evol. Equ. Control Theory 10(4), 797–836 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bongarti, M., Lasiecka, I., Rodrigues, J.H.: Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. Discret. Contin. Dyn. Syst. Ser. S 15(6), 1355–1376 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camurdan, M., Ji, G.: Uniform feedback stabilization via boundary moments in a three dimensional structural acoustic model. 37 IEEE CDC Proc. 3, 2058–2064 (1998)

  5. Cagnol, J., Lasiecka, I., Lebiedzik, C., Zolesio, J.P.: Uniform stability in structural acoustic models with flexible curved walls. J. Differ. Equ. 186, 88–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chai, S.G., Guo, Y.X., Yao, P.F.: Boundary feedback stabilization of shallow shells. SIAM J. Control Optim. 42(1), 239–259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalsen, M.G.-V.: On a structural acoustic model with interface a Reissner-Mindlin plate or a Timoshenko beam. J. Math. Anal. Appl. 320, 121–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dalsen, M.G.-V.: On a structural acoustic model which incorporates shear and thermal effects in the structural component. J. Math. Anal. Appl. 341(2), 1253–1270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, L., Zhang, Z.F.: Controllability for transmission wave/plate equations on Riemannian manifolds. Syst. Control Lett. 19, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gulliver, R., Lasiecka, I., Littman, W., Triggiani, R.: The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber. In: Geometric Methods in Inverse Problems and PDE control. IMA Vol. Math. Appl., vol. 137, pp. 73–181, Springer, New York (2004)

  11. Hao, J.H., Du, F.Q.: Decay rate for viscoelastic wave equation of variable coefficients with delay and dynamic boundary conditions. Math. Methods Appl. Sci. 44(1), 284–302 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaltenbacher, B., Kukavica, I., Lasiecka, I., Triggiani, R., Tuffaha, A., Webster, J. T.: Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions. Lecture Notes from Oberwolfach Seminars. Oberwolfach Seminars 48, Birkhäuser/Springer, Cham (2018)

  13. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equations with Dirichlet or Neumann feedback control without geometric conditions. Appl. Math. Optim. 25(2), 189–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasiecka, I., Tartaru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  Google Scholar 

  15. Lasiecka, I., Marchard, R.: Riccati equations arising in acoustic structure interaction with curved walls. Dyn. Control 8, 269–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lasiecka, I.: Mathematical control theory in structural acoustic problems. Math. Models Methods Appl. Sci. 8(7), 1119–1153 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lasiecka, I., Lebiedzik, C.: Uniform stability in structural acoustic systems with thermal effiects and nonlinear boundary damping. Control Cyber. (special invited volume on “Control of PDE’s”) 28, 557-581 (1999)

  18. Lasiecka, I.: Boundary stabilization of a 3-dimensional structural acoustic model. J. Math. Pure Appl. 78, 203–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasiecka, I., Lebiedzik, C.: Decay rates of interactive hyperbolic-parabolic PDE models with thermal effects on the interface. Appl. Math. Optim. 142, 127–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasiecka, I., Lebiedzik, C.: Asymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interface. Nonlinear Anal. TMA 49, 703–735 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lasiecka, I., Triggiani, R.: Uniform stabilization of a shallow shell model with nonlinear boundary feedbacks. J. Math. Anal. Appl. 269, 642–688 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lasiecka, I., Rodrigues, J.H.: Weak and strong semigroups in structural acoustic Kirchhoff-Boussinesq interactions with boundary feedback. J. Differ. Equ. 298, 387–429 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J., Chai, S.G.: Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback. Nonlinear Anal. TMA 112, 105–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Chai, S.G.: Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay inlocalized nonlinear internal feedback. J. Math. Anal. Appl. 443, 981–1006 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Chai, S.G.: Stabilization of the variable-coefficient structural acoustic model with curved middle surface and delay effects in the structural component. J. Math. Anal. Appl. 454, 510–532 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, S., Yao, P.F.: Stabilization of the Euler-Bernoulli plate with variable coefficients by nonlinear internal feedback. Automatica 50, 2225–2233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y.X., Yao, P.F.: Energy decay rate of the wave equations on Riemannian manifolds with critical potential. Appl. Math. Optim. 78, 61–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morse, P.M., Ingard, K.U.: Theoretical Acoustics. McGraw-Hill, New York (1968)

    Google Scholar 

  29. Wu, H., Shen, C.L., Yu, Y.L.: An Introduction to Riemannian Geometry. Peking University Press, Beijing (1989)

    Google Scholar 

  30. Yao, P.F.: On the observatility inequality for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao, P.F.: Observability inequalities for shallow shells. SIAM J. Control Optim. 38(6), 1729–1756 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yao, P.F.: Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  33. Yang, F.Y., Yao, P.F., Chen, G.: Boundary controllability of structural acoustic systems with variable coefficients and curved walls. Math. Control Signals Syst. 30, 5 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Nature Science Foundation of China for the Youth (11801339), National Natural Science Foundation of China (62273217,12131008), Nature Science Foundation of Shanxi Province (201901D111042, 201901D211162), Shanxi Scholarship Council of China (2020-006).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chai, S. Uniform Decay Rates for a Variable-Coefficient Structural Acoustic Model with Curved Interface on a Shallow Shell. Appl Math Optim 87, 56 (2023). https://doi.org/10.1007/s00245-023-09968-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09968-2

Keywords

Mathematics Subject Classification

Navigation