Skip to main content
Log in

A Double Phase Problem Involving Hardy Potentials

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we deal with the following double phase problem

$$\begin{aligned} \left\{ \begin{array}{lll} -\text{ div }\left( |\nabla u|^{p-2}\nabla u+a(x)|\nabla u|^{q-2}\nabla u\right) =&{} \gamma \left( \displaystyle \frac{|u|^{p-2}u}{|x|^p}+a(x)\displaystyle \frac{|u|^{q-2}u}{|x|^q}\right) \\ &{}+f(x,u) &{} \text{ in } \Omega ,\\ u=0&{} &{} \text{ in } \partial \Omega , \end{array} \right. \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^N\) is an open, bounded set with Lipschitz boundary, \(0\in \Omega \), \(N\ge 2\), \(1<p<q<N\), weight \(a(\cdot )\ge 0\), \(\gamma \) is a real parameter and f is a subcritical function. By variational method, we provide the existence of a non-trivial weak solution on the Musielak-Orlicz-Sobolev space \(W^{1,{\mathcal {H}}}_0(\Omega )\), with modular function \({\mathcal {H}}(t,x)=t^p+a(x)t^q\). For this, we first introduce the Hardy inequalities for space \(W^{1,{\mathcal {H}}}_0(\Omega )\), under suitable assumptions on \(a(\cdot )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autuori, G., Pucci, P.: Existence of entire solutions for a class of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. - NoDEA 20, 977–1009 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bahrouni, A., Rǎdulescu, V.D., Repovš, D.D.: Double phase transonic ow problems with variable growth: Nonlinear patterns and stationary waves. Nonlinearity 32, 2481–2495 (2019)

    Article  MathSciNet  Google Scholar 

  3. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    Article  MathSciNet  Google Scholar 

  4. Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)

    Article  MathSciNet  Google Scholar 

  5. Brézis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    Book  Google Scholar 

  6. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functional. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  7. Byun, S.S., Oh, J.: Regularity results for generalized double phase functionals. Anal. PDE 13, 1269–1300 (2020)

    Article  MathSciNet  Google Scholar 

  8. Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\)&\(q\)-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)

    Article  MathSciNet  Google Scholar 

  9. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Math. Pura Appl. (4) 195, 1917–1959 (2016)

    Article  MathSciNet  Google Scholar 

  10. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)

    Article  MathSciNet  Google Scholar 

  11. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)

    Article  MathSciNet  Google Scholar 

  12. Diening, L., Harjulehto, P., Hästö, P., Ru̇žička, M.: Lebesgue and Sobolev spaces with variable exponents Lecture Notes in Mathematics. Springer, Heidelberg (2011)

    Book  Google Scholar 

  13. Farkas, C., Winkert, P.: An existence result for singular Finsler double phase problems. J. Differ. Equ. 286, 455–473 (2021)

    Article  MathSciNet  Google Scholar 

  14. García Azozero, J.P., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)

    Article  MathSciNet  Google Scholar 

  15. Gasiński, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268, 4183–4193 (2020)

    Article  MathSciNet  Google Scholar 

  16. Ge, B., Lv, D.J., Lu, J.F.: Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz conditions. Nonlinear Anal. 188, 294–315 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265, 4311–4334 (2018)

    Article  MathSciNet  Google Scholar 

  18. Marcellini, P.: Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)

    Article  Google Scholar 

  19. Marcellini, P.: Regularity and existence of solutions of elliptic equations with \((p, q)\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    Article  MathSciNet  Google Scholar 

  20. Mizuta, Y., Shimomura, T.: Hardy–Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501, 124133 (2021)

    Article  MathSciNet  Google Scholar 

  21. Musielak, J.: Orlicz Spaces and Modular Spaces, Lecture Notes in Math, vol. 1034. Springer, Berlin (1983)

    Book  Google Scholar 

  22. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Double-phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys. 69, 21 (2018)

    Article  MathSciNet  Google Scholar 

  23. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Nonlinear Analysis-Theory and Methods. Springer Monographs in Mathematics, Springer, Cham (2019)

    Book  Google Scholar 

  24. Perera, K., Squassina, M.: Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20, 14 (2018)

    Article  MathSciNet  Google Scholar 

  25. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2020)

    Article  MathSciNet  Google Scholar 

  26. Simon, J.: Régularité de la solution d’une équation non linéaire dans \({\mathbb{R}}^n\), In: Journées d’Analyse Non Linéaire. Benilan, P., Robert, J. (eds.) Lecture Notes in Math. Springer, Berlin pp. 205–227 (1978)

  27. Zeng, S., Bai, Y., Gasiński, L., Winkert, P.: Convergence analysis for double phase obstacle problems with multivalued convection term. Adv. Nonlinear Anal. 10, 659–672 (2021)

    Article  MathSciNet  Google Scholar 

  28. Zeng, S., Gasiński, L., Winkert, P., Bai, Y.: Existence of solutions for double phase obstacle problems with multivalued convection term. J. Math. Anal. Appl. 501, 123997 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

  30. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5, 105–116 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Zhikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referee for her/his useful suggestions in order to improve the manuscript. The author is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The author realized the manuscript within the auspices of the GNAMPA project titled Equazioni alle derivate parziali: problemi e modelli (Grant No. Prot_20191219-143223-545), of the FAPESP Project titled Operators with non standard growth (Grant No. 2019/23917-3), of the FAPESP Thematic Project titled Systems and partial differential equations (Grant No. 2019/02512-5) and of the CNPq Project titled Variational methods for singular fractional problems (Grant No. 3787749185990982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Fiscella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiscella, A. A Double Phase Problem Involving Hardy Potentials. Appl Math Optim 85, 45 (2022). https://doi.org/10.1007/s00245-022-09847-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09847-2

Keywords

Mathematics Subject Classification

Navigation