Abstract
In this paper, we deal with the following double phase problem
where \(\Omega \subset {\mathbb {R}}^N\) is an open, bounded set with Lipschitz boundary, \(0\in \Omega \), \(N\ge 2\), \(1<p<q<N\), weight \(a(\cdot )\ge 0\), \(\gamma \) is a real parameter and f is a subcritical function. By variational method, we provide the existence of a non-trivial weak solution on the Musielak-Orlicz-Sobolev space \(W^{1,{\mathcal {H}}}_0(\Omega )\), with modular function \({\mathcal {H}}(t,x)=t^p+a(x)t^q\). For this, we first introduce the Hardy inequalities for space \(W^{1,{\mathcal {H}}}_0(\Omega )\), under suitable assumptions on \(a(\cdot )\).
Similar content being viewed by others
References
Autuori, G., Pucci, P.: Existence of entire solutions for a class of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. - NoDEA 20, 977–1009 (2013)
Bahrouni, A., Rǎdulescu, V.D., Repovš, D.D.: Double phase transonic ow problems with variable growth: Nonlinear patterns and stationary waves. Nonlinearity 32, 2481–2495 (2019)
Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)
Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)
Brézis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)
Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functional. Proc. Am. Math. Soc. 88, 486–490 (1983)
Byun, S.S., Oh, J.: Regularity results for generalized double phase functionals. Anal. PDE 13, 1269–1300 (2020)
Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\)&\(q\)-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)
Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Math. Pura Appl. (4) 195, 1917–1959 (2016)
Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)
Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)
Diening, L., Harjulehto, P., Hästö, P., Ru̇žička, M.: Lebesgue and Sobolev spaces with variable exponents Lecture Notes in Mathematics. Springer, Heidelberg (2011)
Farkas, C., Winkert, P.: An existence result for singular Finsler double phase problems. J. Differ. Equ. 286, 455–473 (2021)
García Azozero, J.P., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)
Gasiński, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268, 4183–4193 (2020)
Ge, B., Lv, D.J., Lu, J.F.: Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz conditions. Nonlinear Anal. 188, 294–315 (2019)
Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265, 4311–4334 (2018)
Marcellini, P.: Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)
Marcellini, P.: Regularity and existence of solutions of elliptic equations with \((p, q)\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)
Mizuta, Y., Shimomura, T.: Hardy–Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501, 124133 (2021)
Musielak, J.: Orlicz Spaces and Modular Spaces, Lecture Notes in Math, vol. 1034. Springer, Berlin (1983)
Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Double-phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys. 69, 21 (2018)
Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Nonlinear Analysis-Theory and Methods. Springer Monographs in Mathematics, Springer, Cham (2019)
Perera, K., Squassina, M.: Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20, 14 (2018)
Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2020)
Simon, J.: Régularité de la solution d’une équation non linéaire dans \({\mathbb{R}}^n\), In: Journées d’Analyse Non Linéaire. Benilan, P., Robert, J. (eds.) Lecture Notes in Math. Springer, Berlin pp. 205–227 (1978)
Zeng, S., Bai, Y., Gasiński, L., Winkert, P.: Convergence analysis for double phase obstacle problems with multivalued convection term. Adv. Nonlinear Anal. 10, 659–672 (2021)
Zeng, S., Gasiński, L., Winkert, P., Bai, Y.: Existence of solutions for double phase obstacle problems with multivalued convection term. J. Math. Anal. Appl. 501, 123997 (2021)
Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)
Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)
Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5, 105–116 (1997)
Zhikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)
Acknowledgements
The author wishes to thank the anonymous referee for her/his useful suggestions in order to improve the manuscript. The author is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The author realized the manuscript within the auspices of the GNAMPA project titled Equazioni alle derivate parziali: problemi e modelli (Grant No. Prot_20191219-143223-545), of the FAPESP Project titled Operators with non standard growth (Grant No. 2019/23917-3), of the FAPESP Thematic Project titled Systems and partial differential equations (Grant No. 2019/02512-5) and of the CNPq Project titled Variational methods for singular fractional problems (Grant No. 3787749185990982).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fiscella, A. A Double Phase Problem Involving Hardy Potentials. Appl Math Optim 85, 45 (2022). https://doi.org/10.1007/s00245-022-09847-2
Accepted:
Published:
DOI: https://doi.org/10.1007/s00245-022-09847-2