Skip to main content
Log in

Robustness of Global Attractors for Extensible Coupled Suspension Bridge Equations with Fractional Damping

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we study the long-time dynamics of the perturbed system of suspension bridge equations

$$\begin{aligned} m_c u_{tt}-\beta u_{xx}+\kappa (u-w)^+ +f_1(u,w)+ (-\partial _{xx})^{\gamma }u_{t}= & {} 0,\\ m_b w_{tt}+\mu w_{xxxx}+(p-\epsilon \Vert w_x\Vert ^2)w_{xx}-\kappa (u-w)^++f_2(u,w)+ (-\partial _{xx})^{\gamma }w_{t}= & {} 0, \end{aligned}$$

where \(\epsilon \in (0, 1]\) is a perturbed parameter and \(\gamma \in (0, 1)\) is said to be a fractional exponent. Under quite general assumptions on source terms and based on semigroup theory, we establish the global well-posedness and the existence of global attractors with finite fractal dimension. We analysis the upper semicontinuity of global attractors on the perturbed parameter \(\epsilon \) in some sense. Moreover, we demonstrate an explicit control over semidistances between trajectories in the weak energy phase space in terms of \(\epsilon \). Finally, we prove that the family of global attractors is upper semicontinuous with respect to the fractional exponent \(\gamma \in (0,1/2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouadi, M.: Global and exponential attractors for extensible thermoelastic plate with time-varying delay. J. Differ. Equ. 269, 4079–4115 (2020)

    Article  MathSciNet  Google Scholar 

  2. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  3. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics (2010)

  4. Carvalho, A.N., Cholewa, J.W.: Attractors for strongly damped wave equations with critical nonlinearities. Pac. J. Math. 207, 287–310 (2002)

    Article  MathSciNet  Google Scholar 

  5. Carvalho, A.N., Cholewa, J.W.: Local well posedness for strongly damped wave equations with critical nonlinearities. Bull. Aust. Math. Soc. 66, 443–463 (2002)

    Article  MathSciNet  Google Scholar 

  6. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27, 1901–1951 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chueshov, I., Eller, M., Lasiecka, I.: Von Karman Evolution Equations: Well-Posedness and Long Time Dynamics. Springer, New York (2002)

  8. Chueshov I., Lasiecka I.: Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of the AMS (2008)

  9. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Springer Monographs in Mathematics. Springer, New York (2010)

  10. Chueshov I.: Introduction to the theory of infinite-dimensional dissipative systems. Acta Kharkov (1999) (in Russian); English translation: Acta, Kharkov (2002)

  11. Chueshov, I., Lasiecka, I.: Attractors and long-time behavior of von Karman thermoelastic plates. Appl. Math. Optim. Equ. 58, 195–241 (2008)

    Article  MathSciNet  Google Scholar 

  12. Chueshov, I., Lasiecka, I.: Attractors for second order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16, 469–512 (2004)

    Article  MathSciNet  Google Scholar 

  13. Jorge Silva, M.A., Narciso, V.: Attractors and their properties for a class of nonlocal extensible beams. Discret. Contin. Dyn. Syst. Ser. B 35, 985–1008 (2015)

    Article  MathSciNet  Google Scholar 

  14. Freitas, M.M., Ramos, A.J.A., Santos, M.L.: Existence and upper-semicontinuity of global attractors for binary mixtures solids with fractional damping. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09590-1

  15. Freitas, M.M., Ramos, A.J.A., Özer, A.Ö., Almeida Júnior, D.S.: Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier’s law. J. Differ. Equ. 280, 891–927 (2021)

    Article  MathSciNet  Google Scholar 

  16. Henry, D.B.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

  17. Kang, J.R.: Global attractor for suspension bridge equations with memory. Math. Methods Appl. Sci. 39, 762–775 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kirchhoff, G.: Vorlesungen über Mechanik, (German), Lectures on Mechanics, Teubner, Stuttgart (1883)

  19. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  Google Scholar 

  20. Liu, G., Feng, B., Yang, X.: Longtime dynamics for a type of suspension bridge equation with past history and time delay. Commun. Pure Appl. Anal. 19, 4995–5013 (2020)

    Article  MathSciNet  Google Scholar 

  21. Ma, Q.Z., Zhong, C.K.: Existence of strong solutions and global attractors for the coupled suspension bridge equations. J. Differ. Equ. 246, 3755–3775 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ma, Q.Z. Zhong, C.K.: Existence of global attractors for the coupled system of suspension bridge equations. J. Math. Anal. Appl. 308, 365–379 (2005)

  23. Miranville, A., Zelik, S.: in Handbook of Differential Equations Evolutionary Equations. Edited by C. Elsevier, M. Dafermos and M. Pokorny (2008)

  24. Park, J.Y., Kang, J.R.: Global attractors for the suspension bridge equations with non- linear damping. Q. Appl. Math. 69, 465–475 (2011)

    Article  Google Scholar 

  25. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  26. Raugel, G.: Global attractors in partial differential equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 885–982. Elsevier, Amsterdam (2002)

    Google Scholar 

  27. Reissig, M.: Structurally damped elastic waves in 2D. Math. Methods Appl. Sci. 39, 4618–4628 (2016)

    Article  MathSciNet  Google Scholar 

  28. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 148, 5–96 (1987)

    Google Scholar 

  29. Yang, Z., Ding, P.: Longtime dynamics of Boussinesq type equations with fractional damping. Nonlinear Anal. 161, 108–130 (2017)

    Article  MathSciNet  Google Scholar 

  30. Yang, Z., Ding, P., Li, L.: Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity. J. Math. Anal. Appl. 442, 485–510 (2016)

    Article  MathSciNet  Google Scholar 

  31. Yang, Z., Li, L.: Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discret. Contin. Dyn. Syst. Ser. B 24, 899–4912 (2019)

    MathSciNet  Google Scholar 

  32. Zhao, C.X., Zhao, C.Y., Zhong, C.K.: The global attractor for a class of extensible beams with nonlocal weak damping. Discret. Contin. Dyn. Syst. Ser. B 25, 935–955 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Zhao, C.X., Ma, S., Zhong, C.K.: Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity. J. Math. Phys. 61, (2020)

Download references

Acknowledgements

The authors would like to thank the referees for their critical review and valuable comments which thoroughly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Aouadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M. Robustness of Global Attractors for Extensible Coupled Suspension Bridge Equations with Fractional Damping. Appl Math Optim 84 (Suppl 1), 403–435 (2021). https://doi.org/10.1007/s00245-021-09774-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09774-8

Keywords

Mathematics Subject Classification

Navigation