Skip to main content

Advertisement

Log in

On the Justification of Koiter’s Equations for Viscoelastic Shells

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon \), all having the same middle surface\(S={\varvec{\theta }}({\bar{\omega }})\subset \hbox {I}\!\hbox {R}^3\), where \(\omega \subset \hbox {I}\!\hbox {R}^2\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma \) and \({\varvec{\theta }}\in {\mathcal {C}}^3({\bar{\omega }};\hbox {I}\!\hbox {R}^3)\). The shells are clamped on a portion of their lateral face, whose middle line is \({\varvec{\theta }}(\gamma _0)\), where \(\gamma _0\) is a non-empty portion of \(\gamma \). The aim of this work is to show that the viscoelastic Koiter’s model is the most accurate two-dimensional approach in order to solve the displacements problem of a viscoelastic shell. Furthermore, the solution of the Koiter’s model, \({\varvec{\xi }}_K^\varepsilon =(\xi _{K,i}^\varepsilon )\), is in \(H^{1}(0,T;V_K(\omega ))\), with \(\xi ^\varepsilon _{K,i}: [0,T]\times {\bar{\omega }}\rightarrow {\mathbb {R}}\) the covariant components of the displacements field \(\xi _{K,i}^\varepsilon {{\textit{\textbf{a}}}}^i\) of the points of the middle surface S and where

$$\begin{aligned} V_K(\omega ):=\{ {\varvec{\eta }}=(\eta _i)\in H^1(\omega )\times H^1(\omega )\times H^2(\omega ); \eta _i=\partial _{\nu }\eta _3=0 \ \text {in} \ \gamma _0 \}, \end{aligned}$$

with \(\partial _\nu \) denoting the outer normal derivative along \(\gamma \). Under the same assumptions as for the viscoelastic elliptic membranes problem, we show that the displacement field, \(\xi _{K,i}^\varepsilon {{\textit{\textbf{a}}}}^i\), converges to \(\xi _{i}{{\textit{\textbf{a}}}}^i\) (the solution of the two-dimensional problem for a viscoelastic elliptic membrane) in \(H^{1}(0,T;H^1(\omega ))\) for the tangential components, and in \(H^{1}(0,T;L^2(\omega ))\) for the normal component, as \(\varepsilon \rightarrow 0\). Under the same assumptions as in the viscoelastic flexural shell problem, we show that the displacement field, \(\xi _{K,i}^\varepsilon {{\textit{\textbf{a}}}}^i\), converges to \(\xi _{i}{{\textit{\textbf{a}}}}^i\) (the solution of the two-dimensional problem for a viscoelastic flexural shell) in \(H^{1}(0,T;H^1(\omega ))\) for the tangential components, and in \(H^{1}(0,T;H^2(\omega ))\) for the normal component, as \(\varepsilon \rightarrow 0\). Also, we obtain analogous results assuming the same assumptions as in the viscoelastic generalized membranes problem. Therefore, we justify the two-dimensional viscoelastic model of Koiter for all kind of viscoelastic shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bock, I., Jarušek, J.: System Modeling and Optimization. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  2. Cao-Rial, M.T., Castiñeira, G., Rodríguez-Arós, Á., Roscani, S.: Mathematical and asymptotic analysis of thermoelastic shells in normal damped response contact. (submitted)

  3. Cao-Rial, M.T., Rodríguez-Arós, A.: Asymptotic analysis of unilateral contact problems for linearly elastic shells: error estimates in the membrane case. Nonlinear Anal. Real World Appl. 48, 40–53 (2019). https://doi.org/10.1016/j.nonrwa.2019.01.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Castiñeira, G., Rodríguez-Arós, Á.: Asymptotic analysis of linearly viscoelastic shells: error estimates in the membrane case. Preprint

  5. Castiñeira, G., Rodríguez-Arós, Á.: On the justification of the viscoelastic generalized membrane shell equations. submitted

  6. Castiñeira, G., Rodríguez-Arós, Á.: Two-dimensional models of linearly viscoelastic membrane shells: error estimates between their solutions. Preprint

  7. Castiñeira, G., Rodríguez-Arós, Á.: Mathematical justification of a viscoelastic elliptic membrane problem. Comptes Rendus Mecanique 345, 824–831 (2017). https://doi.org/10.1007/s00033-011-0180-x

    Article  Google Scholar 

  8. Castiñeira, G., Rodríguez-Arós, Á.: Linear viscoelastic shells: an asymptotic approach. Asymptot. Anal. 107, 169–201 (2018). arXiv:1604.02280v2

  9. Castiñeira, G., Rodríguez-Arós, Á.: On the justification of the viscoelastic elliptic membrane shell equations. J. Elasticity 130, 85–113 (2018). https://doi.org/10.1007/s00033-011-0180-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Castiñeira, G., Rodríguez-Arós, Á.: On the justification of the viscoelastic flexural shell equations. Comput. Math. Appl. 77(11), 2933–2942 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ciarlet, P.G.: Mathematical Elasticity, vol. II: Theory of Plates. Studies in Mathematics and its Applications, vol. 27. North-Holland, Amsterdam (1997)

  12. Ciarlet, P.G.: Mathematical Elasticity, vol. III: Theory of Shells. Studies in Mathematics and its Applications, vol. 29. North-Holland, Amsterdam (2000)

  13. Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Mécanique 18(2), 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells: “generalized membrane shells”. J. Elasticity 43, 147–188 (1996)

    Article  MathSciNet  Google Scholar 

  15. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ration. Mech. Anal. 136, 119–161 (1996)

    Article  MathSciNet  Google Scholar 

  16. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations. Arch. Ration. Mech. Anal. 136, 119–161 (1996)

    Article  MathSciNet  Google Scholar 

  17. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations. Arch. Ration. Mech. Anal. 136, 191–200 (1996)

    Article  MathSciNet  Google Scholar 

  18. Ciarlet, P.G., Lods, V.: On the ellipticity of linear membrane shell equations. J. Math. Pures Appl. 75, 107–124 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Destuynder, P.: Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. PhD thesis, Univ. P. et M. Curie, Paris (1980)

  20. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  Google Scholar 

  21. Formaggia, L., Lamponi, D., Quarteroni, A.: One-dimensional models for blood flow in arteries. J. Eng. Math. 47, 251–276 (2003)

    Article  MathSciNet  Google Scholar 

  22. Friesecke, G., James, R.D., Mora, M.G., Muller, S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence. C. R. Math. Acad. Sci. Paris 336, 697–702 (2003)

    Article  MathSciNet  Google Scholar 

  23. Fushan, L.: Asymptotic analysis of linearly viscoelastic shells. Asymptot. Anal. 36, 21–46 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Fushan, L.: Asymptotic analysis of linearly viscoelastic shells–justification of flexural shell equations. Chin. Ann. Math. 28A, 71–84 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Fushan, L.: Asymptotic analysis of linearly viscoelastic shells–justification of Koiter’s shell equations. Asymptot. Anal. 54, 51–70 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Han, W., Shillor, M., Sofonea, M.: Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137(2), 377–398 (2001). https://doi.org/10.1016/S0377-0427(00)00707-X

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, W., Sofonea, M.: Time-dependent variational inequalities for viscoelastic contact problems. J. Comput. Appl. Math. 136, 369–387 (2001). https://doi.org/10.1016/S0377-0427(00)00627-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplascticity. Studies in Advanced Mathematics. American Mathematical Society/International Press, Somerville (2002)

  29. Jarušek, J.: Contact problems with given time-dependent friction force in linear viscoelasticity. Comment. Math. Univ. Carol. 31(2), 257–262 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74(9), 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  32. Lewicka, M., Mora, M.G., Pakzad, M.R.: Shell theories arising as low energy-limit of 3d nonlinear elasticity. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(5), 253–295 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Li-ming, X.: Asymptotic analysis of dynamic problems for linearly elastic shells—justification of equations for dynamic membrane shells. Asymptot. Anal. 17, 121–134 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Li-ming, X.: Asymptotic analysis of dynamic problems for linearly elastic shells—justification of equations for dynamic flexural shells. Chin. Ann. Math. 22B, 13–22 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Li-ming, X.: Asymptotic analysis of dynamic problems for linearly elastic shells—justification of equations for dynamic Koiter shells. Chin. Ann. Math.Chin. Ann. Math. 22B, 267–274 (2001)

    MathSciNet  Google Scholar 

  36. Lions, J.L.: Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, vol. 323. Springer, Berlin (1973)

  37. Migórski, S., Ochal, A.: Hemivariational inequality for viscoelastic contact problem with slip-dependent friction. Nonlinear Anal. Theory Methods Appl. 61, 135–161 (2005). https://doi.org/10.1016/j.na.2004.11.018

  38. Pipkin, A.C.: Lectures in Viscoelasticity Theory. Applied Sciences. Springer, New York (1972)

    Book  Google Scholar 

  39. Rodríguez-Arós, Á.: Mathematical justification of the obstacle problem for elastic elliptic membrane shells. Appl. Anal. 97(8), 1261–1280 (2018). https://doi.org/10.1080/00036811.2017.1337894

    Article  MathSciNet  MATH  Google Scholar 

  40. Rodríguez-Arós, Á.: Models of elastic shells in contact with a rigid foundation: an asymptotic approach. J. Elasticity 130(2), 211–237 (2018). https://doi.org/10.1007/s10659-017-9638-1

    Article  MathSciNet  MATH  Google Scholar 

  41. Rodríguez-Arós, A., Cao-Rial, M.T.: Asymptotic analysis of linearly elastic shells in normal compliance contact: convergence for the elliptic membrane case. Z. Angew. Math. Phys. 69(5), Art. 115, 22 (2018). https://doi.org/10.1007/s00033-018-1008-8

  42. Rodríguez-Arós, Á., Viaño, J.M.: Mathematical justification of viscoelastic beam models by asymptotic methods. J. Math. Anal. Appl. 370(2), 607–634 (2010). https://doi.org/10.1016/j.jmaa.2010.04.067

    Article  MathSciNet  MATH  Google Scholar 

  43. Rodríguez-Arós, Á., Viaño, J.M.: Mathematical justification of Kelvin–Voigt beam models by asymptotic methods. Z. Angew. Math. Phys. 63(3), 529–556 (2012). https://doi.org/10.1007/s00033-011-0180-x

    Article  MathSciNet  MATH  Google Scholar 

  44. Rodríguez-Arós, Á., Sofonea, M., Viaño, J.M.: Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory. Numer. Math. 108, 327–358 (2007)

    Article  MathSciNet  Google Scholar 

  45. Yao, P.F.: Modeling and Control in Vibrational and Structural Dynamics. A Differential Geometric Approach. CRC Press, Boca Raton, FL (2011)

    Book  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Ministerio de Economía y Competitividad of Spain with the participation of FEDER, under the grant MTM2016-78718-P, and by the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie Grant Agreement No. 823731 CONMECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Castiñeira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castiñeira, G., Rodríguez-Arós, Á. On the Justification of Koiter’s Equations for Viscoelastic Shells. Appl Math Optim 84, 2221–2243 (2021). https://doi.org/10.1007/s00245-020-09708-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09708-w

Keywords

Mathematics Subject Classification

Navigation