Skip to main content
Log in

Existence of Solutions for a Class of Noncoercive Variational–Hemivariational Inequalities Arising in Contact Problems

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

The primary objective is to investigate a class of noncoercive variational–hemivariational inequalities on a Banach space. We start with several new existence results for the abstract inequalities in which our approach is based on arguments of recession analysis and the theory of pseudomonotone operators. A nonsmooth elastic contact problem is considered as an illustrative application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly, S., Goeleven, D., Théra, M.: Recession and noncoercive variational inequalities. Nonlinear Anal. TMA 26, 1573–1603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Y.R., Migórski, S., Zeng, S.D.: Well-posedness of a class of generalized mixed hemivariational–variational inequalities. Nonlinear Anal. RWA 48, 424–444 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Y.R., Migórski, S., Zeng, S.D.: A class of generalized mixed variational–hemivariational inequalities I: Existence and uniqueness result. Comput. Math. Appl. 79, 2897–2911 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Y.R., Gasiński, L., Winkert, P., Zeng, S.D.: \(W^{1, p}\) versus \(C^1\): the nonsmooth case involving critical growth. B. Math. Sci. 10, 15 (2020)

    MATH  Google Scholar 

  5. Baiocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence theorems for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis, H.: Functional Analysis: Universitext. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Brezis, H., Nirenberg, L.: Characterizations of ranges of some nonlinear operators and applications to boundary value problems. Ann. Scu. Norm. Sup. Pisa 1, 225–325 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, New York (2007)

    Book  MATH  Google Scholar 

  9. Chadli, O., Gwinner, J., Ovcharova, N.: On semicoercive variational–hemivariational inequalities-existence, applications, and regularization. Vietnam J. Math. 46, 329–342 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Interscience, New York (1983)

    MATH  Google Scholar 

  11. Fan, J.H., Zhong, R.Y.: Stability analysis for variational inequality in reflexive Banach spaces. Nonlinear Anal. TMA 69, 2566–2574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi-variational inequalities. Control Cybern. 29, 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Goeleven, D., Motreanu, D.: Variational and Hemivariational Inequalities, Theory, Methods and Applications. Volume I: Unilateral Problems. Kluwer Academic Publishers, London, Boston, Dordrecht (2003)

    Book  MATH  Google Scholar 

  14. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities, Theory, Methods and Applications: Volume I: Unilateral Analysis and Unilateral Mechanics. Kluwer Academic Publishers, Boston, Dordrecht, London (2003)

    MATH  Google Scholar 

  15. Han, W., Migorski, S., Sofonea, M. (eds.): Advances in Variational and Hemivariational Inequalities, Advances in Mechanics and Mathematics 33. Springer, New York (2015)

    Google Scholar 

  16. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications. Kluwer Academic Publishers, Boston, Dordrecht, London (1999)

    Book  MATH  Google Scholar 

  17. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space. Water de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

  18. Liu, Z.H.: Elliptic variational hemivariational inequalities. Appl. Math. Lett. 16, 871–876 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Z.H.: Browder–Tikhonov regularization of non-coercive evolution hemivariational inequalities. Inverse Problems 21, 13–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z.H., Zeng, B.: Existence results for a class of hemivariational inequalities involving the stable (G, F,\(\alpha \))-quasimonotonicity. Topol. Methods Nonlinear Anal. 47, 195–217 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Liu, Z.H., Zeng, S.D., Motreanu, D.: Evolutionary problems driven by variational inequalities. J. Differ. Equ. 260, 6787–6799 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Z.H., Migórski, S., Zeng, S.D.: Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J. Differ. Equ. 263, 3989–4006 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Z.H., Zeng, S.D., Motreanu, D.: Partial differential hemivariational inequalities. Adv. Nonlinear Anal. 7, 571–586 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Migórski, S., Zeng, S.D.: Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model. Nonlinear Anal. RWA 43, 121–143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Migorski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    MATH  Google Scholar 

  26. Migórski, S., Shillor, M., Sofonea, M. (eds.): Special section on contact mechanics. Nonlinear Anal. RWA 22, 435–679 (2015)

  27. Migórski, S., Ochal, A., Sofonea, M.: A class of variational–hemivariational inequalities in reflexive Banach spaces. J. Elast. 127, 151–178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Migórski, S., Khan, A.A., Zeng, S.D.: Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Probl. 36, 22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker Inc., New York, Basel, Hong Kong (1995)

    MATH  Google Scholar 

  30. Panagiotopoulos, P.D.: Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mech. 42, 160–183 (1983)

    Google Scholar 

  31. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  32. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  33. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Notes, Cambridge University Press (2012)

  34. Sofonea, M., Migorski, S.: Variational-Hemivariational Inequalities with Applications. Monographs and Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton (2018)

    MATH  Google Scholar 

  35. Sofonea, M., Han, W., Migorski, S.: Numerical analysis of history-dependent variational inequalities with applications to contact problems. Eur. J. Appl. Math. 26, 427–452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeidler, E.: Nonlinear Functional Analysis and Applications II A/B. Springer, New York (1990)

    MATH  Google Scholar 

  37. Zeng, S.D., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun. Nonlinear Sci. 56, 34–48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zeng, S.D., Liu, Z., Migórski, S.: A class of fractional differential hemivariational inequalities with application to contact problem. Z. Angew. Math. Phys. 69, 36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeng, S.D., Gasiński, L., Winkert, P., Bai, Y.R.: Existence of solutions for double phase obstacle problems with multivalued convection term. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jde.2019.10.022

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by NNSF of China Grant Nos. 11671101 and 11961074, NSF of Guangxi Grant No. 2018GXNSFDA138002. The High Level Innovation Team Program from Guangxi Higher Education Institutions of China (Document No. [2018] 35). This project has also received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 823731-CONMECH. National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the Startup Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhai Liu or Ching-Feng Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Z., Wen, CF. et al. Existence of Solutions for a Class of Noncoercive Variational–Hemivariational Inequalities Arising in Contact Problems. Appl Math Optim 84, 2037–2059 (2021). https://doi.org/10.1007/s00245-020-09703-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09703-1

Keywords

Mathematics Subject Classification

Navigation