Skip to main content
Log in

On the Conserved Caginalp Phase-Field System with Logarithmic Potentials Based on the Maxwell–Cattaneo Law with Two Temperatures

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Our aim in this article is to study generalizations of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures for heat conduction and with logarithmic nonlinear terms. We obtain well-posedness results and study the asymptotic behavior of the associated system. In particular, we prove the existence of the global attractor and prove the strict separation to the pure phases in two space dimensions. Furthermore, we give some numerical simulations, obtained with the FreeFem++ software [23], comparing the conserved Caginalp phase-field type model with regular and with logarithmic nonlinear terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, A., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, London (2003)

    MATH  Google Scholar 

  2. Aizicovici, S., Petzeltová, H.: Convergence to equilibria of solutions to a conserved phase-field system with memory. Discrete Cont. Dyn. Syst. 2, 1–16 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  4. Brochet, D.: Maximal attractor and inertial sets for some second and fourth order phase field models. Pitman Res. Notes Math. Ser. 296, 77–85 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Brochet, D., Hilhorst, D., Novick-Cohen, A.: Maximal attractor and inertial sets for a conserved phase field model. Adv. Diff. Equ. 1, 547–578 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Caginalp, G.: Conserved-phase field system: Implications for kinetic undercooling. Phys. Rev. B 38, 789–791 (1988)

    Google Scholar 

  7. Caginalp, G.: The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math. 44, 77–94 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 258–267 (1958)

    MATH  Google Scholar 

  10. Chen, P.J., Gurtin, M.E.: On a theory of heat involving two temperatures. J. Appl. Math. Phys. (ZAMP) 19, 614–627 (1968)

    MATH  Google Scholar 

  11. Chen, P.J., Gurtin, M.E., Williams, W.O.: A note on a non-simple heat conduction. J. Appl. Math. Phys. (ZAMP) 19, 969–970 (1968)

    Google Scholar 

  12. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple materials with two temperatures. J. Appl. Math. Phys. (ZAMP) 20, 107–112 (1969)

    MATH  Google Scholar 

  13. Christov, C.I., Jordan, P.M.: Heat conduction paradox involving second-sound propagation in moving medis. Phys. Rev. Lett. 94, 154301 (2005)

    Google Scholar 

  14. Colli, P., Gilardi, G., Grasselli, M., Schimperna, G.: The conserved phase-field system with memory. Adv. Math. Sci. Appl. 11, 265–291 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Colli, P., Gilardi, G., Laurençot, Ph, Novick-Cohen, A.: Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete Cont. Dyn. Syst. 5, 375–390 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24, 1491–1514 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Dupaix, C.: A singularly perturbed phase field model with a logarithmic nonlinearity. Nonlinear Anal. 41, 725–744 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Gatti, S., Grasselli, M., Pata, V.: Exponential attractors for a conserved phase-field system with memory. Phys. D 189, 31–48 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Gatti, S., Miranville, A.: Asymptotic behavior of a phase-field system with dynamic boundary conditions, In: Favini, A., Lorenzi, A. (eds.) Differential Equations: Inverse and Direct Problems (Proceedings of the workshop “Evolutiob Equations: Inverse and Direct Problems”, Cortona, June 21–25, 2004), A series of Lecture notes in pure and applied mathematics, vol. 251, Chapman & Hall, London, pp. 149–170 (2006)

  20. Gilardi, G.: On a conserved phase field model with irregular potentials and dynamic boundary conditions. Istituto Lombardo 141, 129–161 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Giorgini, A., Grasselli, M., Miranville, A.: The Cahn–Hilliard Oono equation with singular potential. Math. Models Methods Appl. Sci. 27, 2485–2510 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280, 1475–1509 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K.: Freefem++ Manual (2012)

  24. Jiang, J.: Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law. J. Math. Anal. Appl. 341, 149–169 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Jiang, J.: Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law. Math. Methods Appl. Sci. 32, 1156–1182 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High-performance domain decomposition methods on massively parallel architectures with FreeFem++. J. Num. Math. 20–4, 287–302 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux limites non linéaires, Dunod

  28. Makki, A., Miranville, A., Sadaka, G.: On the nonconserved Caginalp phase-field system based on the maxwell Cattaneo law with two temperatures and logarithmic potentials. Discrete Contin. Dyn. Syst. 24, 1341–1365 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Miranville, A.: Finite dimensional global attractor for a class of doubly nonlinear parabolic equations. Cent. Eur. J. Math. 4, 163–182 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Miranville, A.: On the conserved phase-field system. J. Math. Anal. Appl. 400, 143–152 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Miranville, A.: A generalized conserved phase-field system based on type \(\rm III\) heat conduction I. Quart. Appl. Math. LXX, 755–771 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Miranville, A.: Some mathematical models in phase transition. Discrete Contin. Dyn. Syst. 7, 271–306 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Miranville, A.: Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell–Cattaneo law. Commun. Pure Appl. Anal. 13, 1971–1987 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Miranville, A.: A reformulation of the Caginalp phase-field system based on the Maxwell–Cattaneo law. Int. J. Eng. Sci. 88, 128–140 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal. TMA 71, 2278–2290 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88, 877–894 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Miranville, A., Quintanilla, R.: A phase-field model based on a three-phase-lag heat conduction. Appl. Math. Optim. 63, 133–150 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Miranville, A., Quintanilla, R.: A type \(\rm III\) phase-field system with a logarithmic potential. Appl. Math. Lett. 24, 1003–1008 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Miranville, A., Quintanilla, R.: A generalization of the Allen–Cahn equation. IMA J. Appl. Math. 80, 410–430 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Miranville, A., Quintanilla, R.: A Caginalp phase-field system based on type \(\rm {III}\) heat conduction with two temperatures. Quart. Appl. Math. 74, 375–398 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Miranville, A., Quintanilla, R.: On the Caginalp phase-field systems with two temperatures and the Maxwell–Cattaneo law. Math. Methods Appl. Sci. 35, 4385–4397 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbouded domains. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations, Evolutionary Partial Differential Equations, pp. 103–200. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  43. Mola, G.: Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory. Math. Methods Appl. Sci. 32, 2368–2404 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Nagai, T.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Novick-Cohen, A.: A conserved phase-field model with memory, GAKUTO International Series. Mathematical Sciences and Applications, vol. 5. Gakkotosho Co., Ltd., Tokyo (1995)

  46. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68, 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  47. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, Providence (R1): AMS Chelsea Publishing. American Mathematical Society, Providence (2001)

    Google Scholar 

  48. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their careful reading of the manuscript and many useful comments which helped improve it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Makki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makki, A., Miranville, A. & Sadaka, G. On the Conserved Caginalp Phase-Field System with Logarithmic Potentials Based on the Maxwell–Cattaneo Law with Two Temperatures. Appl Math Optim 84, 1285–1316 (2021). https://doi.org/10.1007/s00245-020-09677-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09677-0

Keywords

Mathematics Subject Classification

Navigation