Skip to main content

Advertisement

Log in

Stabilization Results for Well-Posed Potential Formulations of a Current-Controlled Piezoelectric Beam and Their Approximations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Hysteresis is highly undesired for the vibration control of piezoelectric beams especially in high-precision applications. Current-controlled piezoelectric beams cope with hysteresis substantially in comparison to the voltage-controlled counterparts. However, the existing low fidelity current-controlled beam models are finite dimensional, and they are either heuristic or mathematically over-simplified differential equations. In this paper, novel infinite-dimensional models, by a thorough variational approach, are introduced to describe vibrations on a piezoelectric beam. Electro-magnetic effects due to Maxwell’s equations factor in the models via the electric and magnetic potentials. Both models are written in the standard state-space formulation (ABC), and are shown to be well-posed in the energy space by fixing the so-called Coulomb and Lorenz gauges. Different from the voltage-actuated counterparts, the control operator B is compact in the energy space, i.e. the exponential stabilizability is not possible. Considering the compact \(C=B^*-\)type state feedback controller (induced voltage), both models fail to be asymptotically stable if the material parameters satisfy certain conditions. To achieve at least asymptotic stability, we propose an additional controller. Finally, the stabilizability of infinite-dimensional electrostatic/quasi-static model (no magnetic effects) is analyzed for comparison. The biggest contrast is that the asymptotic stability is achieved by an electro-mechanical state feedback controller for all material parameters. Our findings are simulated by the filtered semi-discrete Finite Difference Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adriaens, H., de Koning, W.L., Banning, R.: Modeling piezoelectric actuators. IEEE/ASME Trans. Mechtron. 5–4, 331–341 (2000)

    Google Scholar 

  2. Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modelling Estimation and Control. Mason, Paris (1996)

    MATH  Google Scholar 

  3. Bazghaleh, M., Grainger, S., Mohammadzaheri, M.: A review of charge methods for driving piezoelectric actuators. J. Intell. Mater. Syst. 15, 29–110 (2017)

    Google Scholar 

  4. Cao, Y., Chen, X.B.: A survey of modeling and control issues for piezo-electric actuators. J. Dyn. Syst. Meas. Control 137–1, 014001 (2014)

    Google Scholar 

  5. Comstock, R.: Charge control of piezoelectric actuators to reduce hysteresis effects, (United States Patent # 4,263,527, Assignee: The Charles Stark Draper Labrotary)

  6. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  7. Dagdeviren, C., et al.: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. US A 111, 1927–1932 (2014)

    Google Scholar 

  8. Dagdeviren, C., et al.: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting. Sens. Actuation Extreme Mech. Lett. 9(1), 269–281 (2016)

    Google Scholar 

  9. Devasia, S., Eleftheriou, E., Reza Moheimani, S.O.: A Survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15, 802–823 (2007)

    Google Scholar 

  10. EXACTO Guided Bullet Demonstrates Repeatable Performance against Moving Targets, DARPA, 27 April 2015. Last accessed: (5 January 2018)

  11. Dautray, R., Lions, J.L.: Spectral Theory and Applications. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer, Berlin (1988)

    MATH  Google Scholar 

  12. Dautray, R., Lions, J.L.: Spectral Theory and Applications. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer, Berlin (1990)

    MATH  Google Scholar 

  13. Destuynder, Ph, Legrain, I., Castel, L., Richard, N.: Theoretical, numerical and experimental discussion of the use of piezoelectric devices for control-structure interaction. Eur J. Mech. A Solids 11, 181–213 (1992)

    MathSciNet  Google Scholar 

  14. Erturk, A., Inman, D.: A distrbiuted parameter model for cantilever model for piezoelectric energy harvesting from base excitations. J. Vib. Acoust. 130, 041002 (2008)

    Google Scholar 

  15. Fleming, A.J., Moheimani, S.O.R.: Precision current and charge amplifiers for driving highly capacitive piezoelectric loads. Electron. Lett. 39–3, 282–284 (2003)

    Google Scholar 

  16. Freitas, M.M., Ramos, A.J.A., Almeida Jr., D.S., Özer, A.Ö.: Long time dynamics for fractional piezoelectric system with magnetic effects and Fourier Law, submitted

  17. Giurgiutiu, V.: Structural Health Monitoring/with Piezoelectric Wafer Active Sensors. Elsevier Academic Press, Amsterdam (2008)

    Google Scholar 

  18. Gu, G.Y., Zhu, L.M., Su, C.Y., Ding, H., Fatikow, S.: Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Autom. Sci. Eng. 13–1, 313–332 (2016)

    Google Scholar 

  19. Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1, 327–354 (1990)

    Google Scholar 

  20. Hansen, S. W.: Analysis of a plate with a localized piezoelectric patch, Conference on Decision & Control, Tampa, Florida, 2952–2957 (1998)

  21. Jiang, S.N., Jiang, Q., Li, X.F., Guo, S.H., Zhou, H.G., Yang, J.S.: Piezoelectro-magnetic waves in a ceramic plate between two ceramic half-spaces. Int. J. Solids Struct. 43, 5799–5810 (2006)

    MATH  Google Scholar 

  22. Lagnese, J.E., Lions, J.-L.: Modeling Analysis and Control of Thin Plates. Masson, Paris (1988)

    MATH  Google Scholar 

  23. Lee, P.C.Y.: A variational principle for the equations of piezoelectromagnetism in elastic dielectric crystals. J. Appl. Phys. 69–11, 7470–7473 (1991)

    Google Scholar 

  24. Main, J.A., Garcia, E.: Design impact of piezoelectric actuator nonlinearities. J. Guid. Control Dyn. 20–2, 327–332 (1997)

    Google Scholar 

  25. Main, J.A., Garcia, E., Newton, D.V.: Precision position control of piezoelectric actuators using charge feedback. J. Guid. Control Dyn. 18–5, 1068–73 (1995)

    MATH  Google Scholar 

  26. Newcomb, C., Flinn, I.: Improving the linearity of piezoelectric ceramic actuators. Electron. Lett. 18–11, 442–443 (1982)

    Google Scholar 

  27. Morris, K.A., Özer, A.Ö.: Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim. 52–4, 2371–2398 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Morris, K.A., Özer, A.Ö.: Comparison of stabilization of current-actuated and voltage-actuated piezoelectric beams, the \(53^{{\rm rd}}\) Proceedings of the IEEE Conference on Decision & Control, Los Angeles, CA, 571–576 (2014)

  29. Oh, S.J., Tataru, D.: Local well-posedness of the \((4 + 1)-\)dimensional Maxwell–Klein–Gordon equation at energy regularity. Ann. PDE 2, 2 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Özer, A.Ö.: Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects. Math. Control Signals Syst. 27, 219–244 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Özer, A.Ö.: Modeling and control results for an active constrained layered (ACL) beam actuated by two voltage sources with/without magnetic effects. IEEE Trans. Autom. Control 62–12, 6445–6450 (2017)

    MATH  Google Scholar 

  32. Özer, A.Ö.: Potential formulation for charge or current-controlled piezoelectric smart composites and stabilization results: Electrostatic vs. Quasi-static vs. Fully-dynamic approaches. IEEE Trans. Autom. Control 64(3), 989–1002 (2018)

    MATH  Google Scholar 

  33. Özer, A.Ö.: Exponential stabilization of the smart piezoelectric composite beam with only one boundary controller. Proc. IFAC Conf. 51–3, 80–85 (2018)

    Google Scholar 

  34. Özer, A.Ö., Hansen, S.W.: Uniform stabilization of a multi-layer Rao–Nakra sandwich beam. Evol. Equ. Control Theory 2–4, 195–210 (2013)

    MATH  Google Scholar 

  35. Özer, A.Ö., Hansen, S.W.: Exact boundary controllability results for a multilayer Rao–Nakra sandwich beam. SIAM J. Control Optim. 52–2, 1314–1337201 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Özer, A.Ö., Khenner, M.: An alternate numerical treatment for the nonlinear PDE models of piezoelectric laminates, SPIE Proceeding of Active and Passive Smart Structures and Integrated Systems XIII, 109671R (2019)

  37. Özer, A.Ö., Morris, K.A.: Modeling and stabilization of current-controlled piezoelectric beams with dynamic electro-magnetic field. ESAIM Control Optim. Calc. Var. 24–8, 1–24 (2019)

    Google Scholar 

  38. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  39. PI Inc., Piezolectric Actuators: components, technologies, operation, http://www.piezo.ws/pdf/Piezo.pdf, p. 63

  40. Ramos, A.J.A., Goncalves, C.S.L., Neto, S.S.C.: Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. ESAIM 52(1), 255–284 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Rogacheva, N.: The Theory of Piezoelectric Shells and Plates. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  42. Ru, C., Liu, X., Sun, Y.: Nanopositioning Technologies: Fundamentals and Applications. Springer International, Berlin (2016)

    Google Scholar 

  43. Russell, D.L.: A General framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173–2, 339–358 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Selberg, S., Tesfahun, A.: Finite-energy global well-posedness of the maxwell-klein-gordon system in lorenz gauge. Commun. Partial Differ. Equ. 35–6, 1029–1057 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Ultrasound imaging of the brain and liver, Science Daily Magazine, Source: Acoustical Society of America, 26 June 2017. Accessed: 5 January 2018

  46. Shubov, M.: Spectral analysis of a non-selfadjoint operator generated by an energy harvesting model and application to an exact controllability problem. Asymptot. Anal. 102(3–4), 119–156 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Smith, R.C.: Smart Material Systems. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    MATH  Google Scholar 

  48. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Google Scholar 

  49. Tebou, L.T., Zuazua, E.: Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26, 337–365 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Tzou, H.S.: Piezoelectric shells, Solid Mechanics and Its Applications. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  51. Ultrasonic Welding: Basic Knowledge, Beijing Ultrasonic [PDF document], uploaded on 07 Jan 2013.

  52. Voss, T., Scherpen, J.M.A.: Stabilization and shape control of a 1-D piezoelectric timoshenko beam. Automatica 47, 2780–2785 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Voss, T., Scherpen, J.M.A.: Port-hamiltonian modeling of a nonlinear timoshenko beam with piezo actuation. SIAM J. Control Optim. 52–1, 493–519 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Voss, T., Sherpen, J.M.A.: Stability analysis of piezoelectric beams. In 50th IEEE Conference on Decision and Control and European Control Conference, 3758–3763 (2011)

  55. Yang, J.: Special Topics in the Theory of Piezoelectricity. Springer, New York (2009)

    MATH  Google Scholar 

  56. Yang, G., Du, J., Wang, J., Yang, J.: Frequency dependence of electromagnetic radiation from a finite vibrating piezoelectric body. Mech. Res. Commun. 93, 163–168 (2018)

    Google Scholar 

  57. Wehbe, A.: Rational energy decay rate in a wave equation with dynamical control. Appl. Math. Lett. 16–3, 357–364 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Özkan Özer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The financial support of KY NSF EPSCoR Grant (\(\#1514712-1\)) and Western Kentucky University RCAP grant (\(\#20-8038\)) for this research is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, A.Ö. Stabilization Results for Well-Posed Potential Formulations of a Current-Controlled Piezoelectric Beam and Their Approximations. Appl Math Optim 84, 877–914 (2021). https://doi.org/10.1007/s00245-020-09665-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09665-4

Keywords

Navigation