Skip to main content
Log in

Optimal Control of Multiphase Free Boundary Problems for Nonlinear Parabolic Equations

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider the optimal control of singular nonlinear partial differential equation which is the distributional formulation of the multiphase Stefan type free boundary problem for the general second order parabolic equation. Boundary heat flux is the control parameter, and the optimality criteria consist of the minimization of the \(L_2\)-norm difference of the trace of the solution to the PDE problem at the final moment from the given measurement. Sequence of finite-dimensional optimal control problems is introduced through finite differences. We establish existence of the optimal control and prove the convergence of the sequence of discrete optimal control problems to the original problem both with respect to functional and control. Proofs rely on establishing a uniform \(L_{\infty }\) bound, and \(W_2^{1,1}\)-energy estimate fo the discrete nonlinear PDE problem with discontinuous coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. I.Well-posedness and convergence of the method of lines. Inverse Probl. Imaging 7(2), 307–340 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Probl. Imaging 10(4), 869–898 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Abdulla, U.G., Goldfarb, J.: Fréchet differentiability in Besov spaces in the optimal control of parabolic free boundary problems. Inverse Ill-Posed Probl. 26(2), 211–227 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Abdulla, U.G., Poggi, B.: Optimal control of the multiphase Stefan problem. Appl. Math. Opt. 80(2), 479–513 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Abdulla, U.G., Poggi, B.: Optimal Stefan problem. Calc. Var. arXiv:1901.04663

  6. Abdulla, U.G., Cosgrove, E., Goldfarb, J.: On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems. Evol. Equ. Control Theory 6(3), 319–344 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Abdulla, U.G., Bukshtynov, V., Hagverdiyev, A.: Gradient method in Hilbert-Besov spaces for the optimal control of parabolic free boundary problems. J. Comput. Appl. Math. 346, 84–109 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Abdulla, U.G., Goldfarb, J., Hagverdiyev, A.: Optimal control of coefficients in parabolic free boundary problems modeling laser ablation. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.112736

  9. Alifanov, O.M.: Inverse Heat Transfer Problems. Springer-Verlag, New York (1995)

    Google Scholar 

  10. Baumeister, J.: Zur optimalen steuerung von freien randwertaufgaben. ZAMM 60, 333–335 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Bell, J.B.: The non-characteristic cauchy problem for a class of equations with time dependence. I. Problem in one space dimension. SIAM J. Math. Anal 12, 759–777 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Bernauer, M., Herzog, R.: Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33(1), 342–363 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Embedding Theorems, Winston & Sons. Wiley, Washington, D.C. (1978)

    Google Scholar 

  14. Budak, B.M., Vasil’eva, V.N.: On the solution of the inverse Stefan problem. Soviet Math. Dokl. 13, 811–815 (1972)

    MATH  Google Scholar 

  15. Budak, B.M., Vasil’eva, V.N.: The solution of the inverse Stefan problem. USSR Comput. Maths. Math. Phys 13, 130–151 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Budak, B.M., Vasil’eva, V.N.: On the solution of Stefan’s converse problem II. USSR Comput. Math. Math. Phys. 13, 97–110 (1973)

    MATH  Google Scholar 

  17. Caffarelli, L.A., Evans, L.C.: Continuity of the temperature in the two-phase Stefan problem. Arch. Ration. Mech. Anal. 81(3), 199–220 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Cannon, J.R.: A Cauchy problem for the heat equation. Ann. Math. 66, 155–166 (1964)

    MathSciNet  MATH  Google Scholar 

  19. Cannon, J.R., Douglas, J.: The Cauchy problem for the heat equation. SIAM J. Numer. Anal. 4, 317–336 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Carasso, A.: Determining surface temperatures from interior observations. SIAM J. Appl. Math. 42, 558–574 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Colli, P., Grasselli, M., Sprekels, J.: Automatic control via thermostats of a hyperbolic Stefan problem with memory. Appl. Math. Opt. 39, 229–255 (1999)

    MathSciNet  MATH  Google Scholar 

  22. DiBenedetto, E.: Continuity of weak solutions to certain singular parabolic equations. Ann. Mater. Pura Appl. (4) 130, 131–176 (1982)

    MathSciNet  MATH  Google Scholar 

  23. DiBenedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  24. Dunbar, W.B., Petit, N., Rouchon, P., Martin, P.: Motion planning for a nonlinear Stefan problem. Control Optim. Calc. Var. 9, 275–296 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Ewing, R.E.: The Cauchy problem for a linear parabolic equation. J. Math. Anal. Appl. 71, 167–186 (1970)

    MathSciNet  MATH  Google Scholar 

  26. Ewing, R.E., Falk, R.S.: Numerical approximation of a Cauchy problem for a parabolic partial differential equation. Math. Comput. 33, 1125–1144 (1979)

    MathSciNet  MATH  Google Scholar 

  27. Fasano, A., Primicerio, M.: General free boundary problems for heat equations. J. Math. Anal. Appl. 57, 694–723 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, Hoboken (1982)

    MATH  Google Scholar 

  29. Gol’dman, N.L.: Inverse Stefan Problems. Mathematics and Its Applications, vol. 412, p. 250. Kluwer Academic Publishers Group, Dordrecht (1997)

    MATH  Google Scholar 

  30. Gol’dman, N.L.: Properties of solutions of the inverse Stefan problem. Differ. Equ. 39, 66–72 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Hinze, M., Ziegenblag, S.: Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223(2), 657–684 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Hinze, M., Ziegenblag, S.: Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. ZAMM Z. Angew. Math. Mech. 87(6), 430–448 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Hoffmann, K-.H., Niezgodka, M.: Control of parabolic systems involving free boundaries. In: Proc. of Int. Conf. on Free Boundary Problems (1981)

  34. Hoffmann, K.-H., Sprekels, J.: Real time control of free boundary in a two-phase Stefan problem. Numer. Funct. Anal. Opt. 5, 47–76 (1982)

    MathSciNet  MATH  Google Scholar 

  35. Hoffmann, K.-H., Sprekels, J.: On the identification of heat conductivity and latent heat in a one-phase Stefan problem. Control Cybern. 15, 37–51 (1986)

    MathSciNet  Google Scholar 

  36. Jochum, P.: The inverse Stefan problem as a problem of nonlinear approximation theory. J. Approx. Theory 30, 81–98 (1980)

    MathSciNet  MATH  Google Scholar 

  37. Jochum, P.: The numerical solution of the inverse Stefan problem. Numer. Math. 34, 411–429 (1980)

    MathSciNet  MATH  Google Scholar 

  38. Kamenomostskaya, S.L.: On Stefan’s Problem, On Stefan’s problem. (Russian) Mat. Sb. (N.S.), 53(95) (1961)

  39. Kang, S., Zabaras, N.: Control of the freezing interface motion in two-dimensional solidification processes using the adjoint method. Int. J. Numer. Method Eng. 38, 63–80 (1995)

    MATH  Google Scholar 

  40. Knabner, P.: Stability theorems for general free boundary problem of the Stefan type and applications. Meth. Ser. Numer. Meth. Verf. Math. Phys. 25, 95–116 (1983)

    MathSciNet  MATH  Google Scholar 

  41. Ladyzenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of the Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1967)

    Google Scholar 

  42. Lurye, K.A.: Optimal Control in Problems of Mathematical Physics. Nauka, Moscow (1975)

    Google Scholar 

  43. Meyrmanov, A.M.: The Stefan Problem. Walter de Gruyter, Berlin (1992)

    Google Scholar 

  44. Niezgodka, M.: Control of parabolic systems with free boundaries-application of inverse formulation. Control Cybern. 8, 213–225 (1979)

    MathSciNet  MATH  Google Scholar 

  45. Nikol’skii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer-Verlag, New York-Heidelberg (1975)

    Google Scholar 

  46. Nochetto, R.H., Verdi, C.: The combined use of nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Opt. 9, 1177–1192 (1987)

    MathSciNet  MATH  Google Scholar 

  47. Oleinik, O.A.: A method of solution of the general Stefan problem. Doklady Akad. Nauk SSSR (in Russian) 135(5), 1050–1057 (1960)

    Google Scholar 

  48. Pawlow, I.: Optimal control of two-phase Stefan problems—numerical solution. Theory and Applications. In: Hoffmann, K.-H., Krabs, W. (eds.) Control of Partial Differential Equations II. Birkhäuser, Berlin (1987)

    Google Scholar 

  49. Pawlow, I.: Optimal control of dynamical processes in two-phase systems of solid-liquid type. Banach Center Publ. 24, 293–319 (1990)

    MathSciNet  MATH  Google Scholar 

  50. Primicero, M.: The occurence of pathologies in some Stefan-like problems. Numer. Treat. Free Bound.-Value Probl. 58, 233–244 (1982)

    Google Scholar 

  51. Sagues, C.: Simulation and optimal control of free boundary. Numer. Treat. Free Bound.-Value Probl. 58, 270–287 (1982)

    Google Scholar 

  52. Sherman, B.: General one-phase Stefan problems and free boundary problems for the heat equation with cauchy data prescribed on the free boundary. SIAM J. Appl. Math. 20, 557–570 (1971)

    MathSciNet  Google Scholar 

  53. Tikhonov, A.N., Arsenin, V.Y.: Solut. Ill-Posed Probl. V.H. Winston and Sons, Wiley, New York (1977)

    Google Scholar 

  54. Talenti, G., Vessella, S.: A note on an Ill-posed problem for the heat equation. J. Austral. Math. Soc. Ser. A 32, 358–368 (1982)

    MathSciNet  MATH  Google Scholar 

  55. Vasil’ev, F.P.: The existence of a solution of a certain optimal Stefan problem, pp. 110–114. XII (Russian), In Comput. Methods and Programming (1969)

  56. Vasil’ev, F.P.: Methods for solving extremal problems. Minimization problems in function spaces, regularization, approximation. Nauka, Moscow (1981). (in Russian)

    MATH  Google Scholar 

  57. Yurii, A.D.: On an optimal Stefan problem. Dokl. Akad. Nauk SSSR 251, 1317–1321 (1980)

    MathSciNet  Google Scholar 

  58. Zabaras, N., Mukherjee, S., Richmond, O.: An analysis of inverse heat transfer problems with phase changes using an integral method. J. Heat Transf. ASME 110, 554–561 (1988)

    Google Scholar 

  59. Zabaras, N., Hung Nguyen, T.: Control of freezing interface morphology in solidification processes in the presence of natural convection. Int. J. Numer. Method Eng. 38, 1555–1578 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur G. Abdulla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulla, U.G., Cosgrove, E. Optimal Control of Multiphase Free Boundary Problems for Nonlinear Parabolic Equations. Appl Math Optim 84, 589–619 (2021). https://doi.org/10.1007/s00245-020-09655-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09655-6

Keywords

Mathematics Subject Classification

Navigation