Abstract
We consider the optimal control of singular nonlinear partial differential equation which is the distributional formulation of the multiphase Stefan type free boundary problem for the general second order parabolic equation. Boundary heat flux is the control parameter, and the optimality criteria consist of the minimization of the \(L_2\)-norm difference of the trace of the solution to the PDE problem at the final moment from the given measurement. Sequence of finite-dimensional optimal control problems is introduced through finite differences. We establish existence of the optimal control and prove the convergence of the sequence of discrete optimal control problems to the original problem both with respect to functional and control. Proofs rely on establishing a uniform \(L_{\infty }\) bound, and \(W_2^{1,1}\)-energy estimate fo the discrete nonlinear PDE problem with discontinuous coefficient.
Similar content being viewed by others
References
Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. I.Well-posedness and convergence of the method of lines. Inverse Probl. Imaging 7(2), 307–340 (2013)
Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Probl. Imaging 10(4), 869–898 (2016)
Abdulla, U.G., Goldfarb, J.: Fréchet differentiability in Besov spaces in the optimal control of parabolic free boundary problems. Inverse Ill-Posed Probl. 26(2), 211–227 (2018)
Abdulla, U.G., Poggi, B.: Optimal control of the multiphase Stefan problem. Appl. Math. Opt. 80(2), 479–513 (2019)
Abdulla, U.G., Poggi, B.: Optimal Stefan problem. Calc. Var. arXiv:1901.04663
Abdulla, U.G., Cosgrove, E., Goldfarb, J.: On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems. Evol. Equ. Control Theory 6(3), 319–344 (2017)
Abdulla, U.G., Bukshtynov, V., Hagverdiyev, A.: Gradient method in Hilbert-Besov spaces for the optimal control of parabolic free boundary problems. J. Comput. Appl. Math. 346, 84–109 (2019)
Abdulla, U.G., Goldfarb, J., Hagverdiyev, A.: Optimal control of coefficients in parabolic free boundary problems modeling laser ablation. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.112736
Alifanov, O.M.: Inverse Heat Transfer Problems. Springer-Verlag, New York (1995)
Baumeister, J.: Zur optimalen steuerung von freien randwertaufgaben. ZAMM 60, 333–335 (1980)
Bell, J.B.: The non-characteristic cauchy problem for a class of equations with time dependence. I. Problem in one space dimension. SIAM J. Math. Anal 12, 759–777 (1981)
Bernauer, M., Herzog, R.: Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33(1), 342–363 (2011)
Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Embedding Theorems, Winston & Sons. Wiley, Washington, D.C. (1978)
Budak, B.M., Vasil’eva, V.N.: On the solution of the inverse Stefan problem. Soviet Math. Dokl. 13, 811–815 (1972)
Budak, B.M., Vasil’eva, V.N.: The solution of the inverse Stefan problem. USSR Comput. Maths. Math. Phys 13, 130–151 (1973)
Budak, B.M., Vasil’eva, V.N.: On the solution of Stefan’s converse problem II. USSR Comput. Math. Math. Phys. 13, 97–110 (1973)
Caffarelli, L.A., Evans, L.C.: Continuity of the temperature in the two-phase Stefan problem. Arch. Ration. Mech. Anal. 81(3), 199–220 (1983)
Cannon, J.R.: A Cauchy problem for the heat equation. Ann. Math. 66, 155–166 (1964)
Cannon, J.R., Douglas, J.: The Cauchy problem for the heat equation. SIAM J. Numer. Anal. 4, 317–336 (1967)
Carasso, A.: Determining surface temperatures from interior observations. SIAM J. Appl. Math. 42, 558–574 (1982)
Colli, P., Grasselli, M., Sprekels, J.: Automatic control via thermostats of a hyperbolic Stefan problem with memory. Appl. Math. Opt. 39, 229–255 (1999)
DiBenedetto, E.: Continuity of weak solutions to certain singular parabolic equations. Ann. Mater. Pura Appl. (4) 130, 131–176 (1982)
DiBenedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)
Dunbar, W.B., Petit, N., Rouchon, P., Martin, P.: Motion planning for a nonlinear Stefan problem. Control Optim. Calc. Var. 9, 275–296 (2003)
Ewing, R.E.: The Cauchy problem for a linear parabolic equation. J. Math. Anal. Appl. 71, 167–186 (1970)
Ewing, R.E., Falk, R.S.: Numerical approximation of a Cauchy problem for a parabolic partial differential equation. Math. Comput. 33, 1125–1144 (1979)
Fasano, A., Primicerio, M.: General free boundary problems for heat equations. J. Math. Anal. Appl. 57, 694–723 (1977)
Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, Hoboken (1982)
Gol’dman, N.L.: Inverse Stefan Problems. Mathematics and Its Applications, vol. 412, p. 250. Kluwer Academic Publishers Group, Dordrecht (1997)
Gol’dman, N.L.: Properties of solutions of the inverse Stefan problem. Differ. Equ. 39, 66–72 (2003)
Hinze, M., Ziegenblag, S.: Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223(2), 657–684 (2007)
Hinze, M., Ziegenblag, S.: Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. ZAMM Z. Angew. Math. Mech. 87(6), 430–448 (2007)
Hoffmann, K-.H., Niezgodka, M.: Control of parabolic systems involving free boundaries. In: Proc. of Int. Conf. on Free Boundary Problems (1981)
Hoffmann, K.-H., Sprekels, J.: Real time control of free boundary in a two-phase Stefan problem. Numer. Funct. Anal. Opt. 5, 47–76 (1982)
Hoffmann, K.-H., Sprekels, J.: On the identification of heat conductivity and latent heat in a one-phase Stefan problem. Control Cybern. 15, 37–51 (1986)
Jochum, P.: The inverse Stefan problem as a problem of nonlinear approximation theory. J. Approx. Theory 30, 81–98 (1980)
Jochum, P.: The numerical solution of the inverse Stefan problem. Numer. Math. 34, 411–429 (1980)
Kamenomostskaya, S.L.: On Stefan’s Problem, On Stefan’s problem. (Russian) Mat. Sb. (N.S.), 53(95) (1961)
Kang, S., Zabaras, N.: Control of the freezing interface motion in two-dimensional solidification processes using the adjoint method. Int. J. Numer. Method Eng. 38, 63–80 (1995)
Knabner, P.: Stability theorems for general free boundary problem of the Stefan type and applications. Meth. Ser. Numer. Meth. Verf. Math. Phys. 25, 95–116 (1983)
Ladyzenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of the Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1967)
Lurye, K.A.: Optimal Control in Problems of Mathematical Physics. Nauka, Moscow (1975)
Meyrmanov, A.M.: The Stefan Problem. Walter de Gruyter, Berlin (1992)
Niezgodka, M.: Control of parabolic systems with free boundaries-application of inverse formulation. Control Cybern. 8, 213–225 (1979)
Nikol’skii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer-Verlag, New York-Heidelberg (1975)
Nochetto, R.H., Verdi, C.: The combined use of nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Opt. 9, 1177–1192 (1987)
Oleinik, O.A.: A method of solution of the general Stefan problem. Doklady Akad. Nauk SSSR (in Russian) 135(5), 1050–1057 (1960)
Pawlow, I.: Optimal control of two-phase Stefan problems—numerical solution. Theory and Applications. In: Hoffmann, K.-H., Krabs, W. (eds.) Control of Partial Differential Equations II. Birkhäuser, Berlin (1987)
Pawlow, I.: Optimal control of dynamical processes in two-phase systems of solid-liquid type. Banach Center Publ. 24, 293–319 (1990)
Primicero, M.: The occurence of pathologies in some Stefan-like problems. Numer. Treat. Free Bound.-Value Probl. 58, 233–244 (1982)
Sagues, C.: Simulation and optimal control of free boundary. Numer. Treat. Free Bound.-Value Probl. 58, 270–287 (1982)
Sherman, B.: General one-phase Stefan problems and free boundary problems for the heat equation with cauchy data prescribed on the free boundary. SIAM J. Appl. Math. 20, 557–570 (1971)
Tikhonov, A.N., Arsenin, V.Y.: Solut. Ill-Posed Probl. V.H. Winston and Sons, Wiley, New York (1977)
Talenti, G., Vessella, S.: A note on an Ill-posed problem for the heat equation. J. Austral. Math. Soc. Ser. A 32, 358–368 (1982)
Vasil’ev, F.P.: The existence of a solution of a certain optimal Stefan problem, pp. 110–114. XII (Russian), In Comput. Methods and Programming (1969)
Vasil’ev, F.P.: Methods for solving extremal problems. Minimization problems in function spaces, regularization, approximation. Nauka, Moscow (1981). (in Russian)
Yurii, A.D.: On an optimal Stefan problem. Dokl. Akad. Nauk SSSR 251, 1317–1321 (1980)
Zabaras, N., Mukherjee, S., Richmond, O.: An analysis of inverse heat transfer problems with phase changes using an integral method. J. Heat Transf. ASME 110, 554–561 (1988)
Zabaras, N., Hung Nguyen, T.: Control of freezing interface morphology in solidification processes in the presence of natural convection. Int. J. Numer. Method Eng. 38, 1555–1578 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Abdulla, U.G., Cosgrove, E. Optimal Control of Multiphase Free Boundary Problems for Nonlinear Parabolic Equations. Appl Math Optim 84, 589–619 (2021). https://doi.org/10.1007/s00245-020-09655-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00245-020-09655-6
Keywords
- Inverse multidimensional multiphase Stefan problem
- Quasilinear parabolic PDE with discontinuous coefficients
- Optimal control
- Method of finite differences
- Discrete optimal control problem
- Weak compactness
- Convergence in functional
- Convergence in control
- Maximal monotone graph