Skip to main content
Log in

Stochastic Maximum Principle Under Probability Distortion

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

A Correction to this article was published on 20 July 2021

This article has been updated

Abstract

Within the framework of the cumulative prospective theory of Kahneman and Tversky, this paper considers a continuous-time behavioral portfolio selection problem whose model includes both running and terminal terms in the objective functional. Despite the existence of S-shaped utility functions and probability distortions, a necessary condition for the optimality is derived. The results are applied to a few examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Allais, M.: Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’ecole americaine. Econometrica 21, 503–546 (1953). https://doi.org/10.2307/1907921

    Article  MathSciNet  MATH  Google Scholar 

  2. Benartzi, S., Thaler, R.H.: Myopic loss aversion and the equity premium puzzle. Q. J. Econ. 110, 73–92 (1995). https://doi.org/10.3386/w4369

    Article  MATH  Google Scholar 

  3. Duffie, D., Epstein, L.G.: Stochastic differential utility. Econometrica 60, 353–394 (1992). https://doi.org/10.2307/2951600

    Article  MathSciNet  MATH  Google Scholar 

  4. Fishburn, P.C.: Nonlinear Preference and Utility Theory. Johns Hopkins University Press, Baltimore (1988)

    MATH  Google Scholar 

  5. He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical treatment. Manag. Sci. 57, 315–331 (2011a). https://doi.org/10.1287/mnsc.1100.1269

    Article  MATH  Google Scholar 

  6. He, X.D., Zhou, X.Y.: Portfolio choice via quantiles. Math. Financ. 21, 203–231 (2011b). https://doi.org/10.1111/j.1467-9965.2010.00432.x

    Article  MathSciNet  MATH  Google Scholar 

  7. Jin, H.Q., Zhou, X.Y.: Behavioral portfolio selection in continuous time. Math. Financ. 18, 385–426 (2008). https://doi.org/10.1111/j.1467-9965.2008.00339.x

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, H.Q., Zhou, X.Y.: Greed, leverage, and potential losses: a prospect theory perspective. Math. Financ. 23, 122–142 (2013). https://doi.org/10.1111/j.1467-9965.2011.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  9. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979). https://doi.org/10.2307/1914185

    Article  MathSciNet  MATH  Google Scholar 

  10. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991). https://doi.org/10.1137/0329039

    Article  MathSciNet  MATH  Google Scholar 

  11. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    Book  Google Scholar 

  12. Levy, H., Levy, M.: Prospect theory and mean–variance analysis. Rev. Financ. Stud. 17, 1015–1041 (2003). https://doi.org/10.1093/rfs/hhg062

    Article  Google Scholar 

  13. Lopes, L.L.: Between hope and fear: the psychology of risk. Adv. Exp. Soc. Psychol. 20, 255–295 (1987). https://doi.org/10.1016/S0065-2601(08)60416-5

    Article  Google Scholar 

  14. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969). https://doi.org/10.2307/1926560

    Article  Google Scholar 

  15. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28, 966–979 (1990). https://doi.org/10.1137/0328054

    Article  MathSciNet  MATH  Google Scholar 

  16. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer, Berlin (2009)

    Book  Google Scholar 

  17. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989). https://doi.org/10.2307/1911053

    Article  MathSciNet  MATH  Google Scholar 

  18. Shefrin, H., Statman, M.: Behavioral portfolio theory. J. Financ. Quant. Anal. 35, 127–151 (2000). https://doi.org/10.2307/2676187

    Article  Google Scholar 

  19. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992). https://doi.org/10.1007/bf00122574

    Article  MATH  Google Scholar 

  20. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  21. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987). https://doi.org/10.2307/1911158

    Article  MathSciNet  MATH  Google Scholar 

  22. Yong, J.M., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous reviewer for his/her constructive comments and suggestions which improve this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by Macao Science and Technology Development Fund FDCT 025/2016/A1 and Southern University of Science and Technology Start up fund Y01286120 and NSFC Grants 61873325 and 11831010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Xiong, J. Stochastic Maximum Principle Under Probability Distortion. Appl Math Optim 83, 2253–2271 (2021). https://doi.org/10.1007/s00245-019-09627-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09627-5

Keywords

Mathematics Subject Classification

Navigation