Skip to main content
Log in

Dynamics of 2D Incompressible Non-autonomous Navier–Stokes Equations on Lipschitz-like Domains

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper concerns the tempered pullback dynamics of 2D incompressible non-autonomous Navier–Stokes equations with a non-homogeneous boundary condition on Lipschitz-like domains. With the presence of a time-dependent external force f(t) which only needs to be pullback translation bounded, we establish the existence of a minimal pullback attractor with respect to a universe of tempered sets for the corresponding non-autonomous dynamical system. We then give estimates on the finite fractal dimension of the attractor based on trace formula. Under the additional assumption that the external force is perturbed from a stationary force by a time-dependent perturbation, we also prove the upper semi-continuity of the attractors as the non-autonomous perturbation vanishes. Lastly, we investigate the regularity of these attractors when smoother initial data are given. Our results are new even for smooth domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Vishik, M.: The attractors of a Navier-Stokes system in unbounded channel-like domain. J. Dyn. Diff. Eqns. 4, 555–584 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A., Vishik, M.: Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)

    Google Scholar 

  3. Brown, R.M., Perry, P.A., Shen, Z.: On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains. Indiana Univ. Math. J. 49, 81–112 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Caraballo, T., Langa, J.A., Robinson, J.C.: Upper semicontinuity of attractors for small random perturbations of dynamical systems. Comm. Partial Diff. Eqns 23, 1557–1581 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Caraballo, T., Łukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64, 484–498 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Applied Mathematical Sciences, vol. 182. Springer, New York (2013)

    MATH  Google Scholar 

  7. Chepyzhov, V.V., Ilyin, A.A.: On the fractal dimension of invariant sets: application to Navier-Stokes equations: partial differential equations and applications. Disc. Cont. Dyn. Syst. 10, 117–135 (2004)

    MATH  Google Scholar 

  8. Chepyzhov, V.V., Titi, E.S., Vishik, M.I.: On the convergence of solutions of the solutions of the Leray-\(\alpha \) model to the trajectory attractor of the 3D Navier-Stokes system. Disc. Cont. Dyn. Syst. 17(3), 481–500 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Chepyzhov, V.V., Titi, E.S., Vishik, M.I.: On convergence of trajectory attractors of the 3D Navier-Stokes-\(\alpha \) model as \(\alpha \) approaches \(0\). Sbornik: Mathematics 198(12), 1703–1736 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, p. 49. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  11. Chepyzhov, V.V., Vishik, M.I.: Averaging of 2D Navier-Stokes equations with singularly oscillating forces. Nonlinearity 22, 351–370 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for 2D Navier-Stokes equation. Comm. Pure Appl. Math. 38, 1–27 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  14. Constantin, P., Foias, C., Manley, O., Temam, R.: Determining models and fractal dimension of turbulence flows. J. Fluid Mech. 150, 427–440 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Constantin, P., Foias, C., Temam, R.: On the dimension of the attractor in two-dimensional turbulence. Physica D 30, 284–296 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Diff. Equ. 9, 307–341 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Cui, H., Langa, J., Li, Y.: Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness. Nonlinear Anal. 140, 208–235 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Dotering, C., Gibbon, J.: Note on the Constantin-Foias-Temam attractor dimension estimate for two-dimensional turbulence. Physica D 48, 471–480 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Foias, C., Manley, O., Temam, R., Treve, Y.: Asymptotic analysis of the Navier-Stokes equations. Physica D 9D, 157–188 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors in \(V\) for non-autonomous 2D-Navier-Stokes equations and their tempered behavior. J. Diff. Eqns. 252, 4333–4356 (2012)

    MATH  Google Scholar 

  23. Hale, J.K., Raugel, G.: Upper semi-continuity of the attractor for a singularly perturbed hyperbolic equation. J. Diff. Eqns. 73, 197–214 (1988)

    MATH  Google Scholar 

  24. Hale, J.K., Lin, X., Raugel, G.: Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. Math. Comput. 50(181), 89–123 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Hopf, E.: Üeber die Anfangswertaufgable für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    MathSciNet  MATH  Google Scholar 

  26. Ilylin, A.A.: Attractors for Navier-Stokes equations in domains with finite measure. Nonlinear Anal. 27(5), 605–616 (1996)

    MathSciNet  Google Scholar 

  27. Ladyzhenskaya, O.A.: On finite dimensionality of bounded invariant sets for the Navier-Stokes equations and some other dissipative system. Zap Nauchnich Seminarov LOMI 115, 137–155 (1982)

    MATH  Google Scholar 

  28. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1968). English edition

    Google Scholar 

  29. Ladyzhenskaya, O.: Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  30. Langa, J.A., Łukaszewicz, G., Real, J.: Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains. Nonlinear Anal. 66, 735–749 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Leray, J.: Etude de diverses equations integrales nonlineaires et de quelques problemes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  32. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    MathSciNet  MATH  Google Scholar 

  33. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, vol. 1, p. 3. Oxford University Press, New York (1996)

    Google Scholar 

  34. Liu, V.X.: A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations. Comm. Math. Phys. 158, 327–339 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Lu, S.: Attractors for non-autonomous 2D Navier-Stokes equations with less regular normal forces. J. Diff. Eqns. 230, 196–212 (2006)

    MATH  Google Scholar 

  36. Łukaszewicz, G., Kalita, P.: Navier-Stokes Equations. An Introduction with Applications. Advances in Mechanics and Mathematics, p. 34. Springer, Cham (2016)

    MATH  Google Scholar 

  37. Ma, T.F., Monteiro, R.N.: Singular limit and long-time dynamics of Bresse systems. SIAM J. Math. Anal. 49(4), 2468–2495 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Ma, Q., Wang, S., Zhong, C.: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ. Math. J. 51, 1541–1559 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Marín-Rubio, P., Real, J.: On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems. Nonlinear Anal. TMA 7, 3956–3963 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Miranville, A.: Shear layer flow in a channel: estimate on the dimension of the attractor. Physica D 65, 135–153 (1993)

    MathSciNet  MATH  Google Scholar 

  41. Miranville, A., Wang, X.: Upper bounded on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Disc. Cont. Dyn. Syst. 2, 95–110 (1996)

    MATH  Google Scholar 

  42. Miranville, A., Wang, X.: Attractors for nonautonomous nonhomogeneous Navier-Stokes equations. Nonlinearity 10, 1047–1061 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Qin, Y.: Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, vol. 184. Birkhäser, Basel (2008)

    MATH  Google Scholar 

  44. Qin, Y.: Integral and Discrete Inequalities and Their Applications. Nonlinear Inequalities, vol. 2. Birkhäser, Basel (2016)

    MATH  Google Scholar 

  45. Robinson, J. C.: Attractors and finite-dimensional behaviour in the 2D Navier-Stokes equations. ISRN Math. Anal. (2013). https://doi.org/10.1155/2013/291823

  46. Robinson, J.C.: Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, vol. 186. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  47. Rosa, R.: The global attractor for the 2D Navier-Stokes flows on some unbounded domain. Nonlinear Anal. 32, 71–85 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam (1979)

    MATH  Google Scholar 

  49. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68. Springer-Verlag, New York (1988)

    MATH  Google Scholar 

  50. Temam, R., Wang, X.: Asymptotic analysis of the linearized Navier-Stokes equations in a channel. Diff. Integral Eqns. 8, 1591–1618 (1995)

    MathSciNet  MATH  Google Scholar 

  51. Wang, Y., Qin, Y.: Upper semi-continuity of pullback attractors for non-classical diffusion equations. J. Math. Phys. 51, 0227-01-12 (2010)

    Google Scholar 

  52. Wang, Y., Zhong, C.K.: On the existence of pullback attractors for non-autonomous reaction-diffusion equations. Dyn. Syst. 23(1), 1–16 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Wang, Y., Zhong, C.K., Zhou, S.: Pullback attractors of non-autonomous dynamical systems. Disc. Cont. Dyn. Syst. 16(3), 587–614 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Wu, D., Zhong, C.: The attractors for the nonhomogeneous nonautonomous Navier-Stokes equations. J. Math. Anal. Appl. 321, 426–444 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Yang, X., Wang, S.: Global well-posedness of solutions for the 2D incompressible non-autonomous Navier-Stokes equation on Lipschitz-like domain. J. Part. Diff. Equ. 32(1), 77–92 (2019)

    MathSciNet  Google Scholar 

  56. Yang, X.: Weak and strong pullback attractors for some nonlinear evolutionary equations with some non-autonomous non-compact external forces, prepared, (2019)

  57. Zelati, M.Coti, Gal, C.G.: Singular limits of Voigt model in fluid dynamics. J. Math. Fluid. Mech. 17, 233–259 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Zelik, S.: Strong uniform attractors for non-autonomous dissipative PDEs with non-translation-compact external forces. Disc. Cont. Dyn. Syst. B 20(3), 781–810 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Zhao, C., Duan, J.: Convergence of global attractors of a 2D non-Newtonian system to the global attractor of the 2D Navier-Stokes system. Sci. China: Math. 56(2), 253–265 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Zhong, C.K., Yang, M., Sun, C.: The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. J. Diff. Equ. 223(2), 367–399 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated when Xin-Guang Yang was a long term visitor as Posdocotor at ICMC-USP, Brazil, from May 2015 to June 2016, supported by FAPESP (Grant No. 2014/17080-0). He was also partially supported by NSFC of China (Grant No.11726626) and the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039). Yongjin Lu was partially supported by NSF (Grant No. 1601127), they were also supported by the Key Project of Science and Technology of Henan Province (Grant No. 182102410069). Yuming Qin was in part supported by the NSFC of China (Grant No. 11671075). T. F. Ma was partially supported by CNPq (Grant No. 310041/2015-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XG., Qin, Y., Lu, Y. et al. Dynamics of 2D Incompressible Non-autonomous Navier–Stokes Equations on Lipschitz-like Domains. Appl Math Optim 83, 2129–2183 (2021). https://doi.org/10.1007/s00245-019-09622-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09622-w

Keywords

Mathematics Subject Classification

Navigation