Skip to main content
Log in

Optimal Control of a Phase Field System Modelling Tumor Growth with Chemotaxis and Singular Potentials

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

A Correction to this article was published on 15 April 2021

This article has been updated

Abstract

A distributed optimal control problem for an extended model of phase field type for tumor growth is addressed. In this model, the chemotaxis effects are also taken into account. The control is realized by two control variables that design the dispensation of some drugs to the patient. The cost functional is of tracking type, whereas the potential setting has been kept quite general in order to allow regular and singular potentials to be considered. In this direction, some relaxation terms have been introduced in the system. We show the well-posedness of the state system, the Fréchet differentiability of the control-to-state operator in a suitable functional analytic framework, and, lastly, we characterize the first-order necessary conditions of optimality in terms of a variational inequality involving the adjoint variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Change history

References

  1. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, vol. 5. North-Holland, Amsterdam (1973)

  2. Cavaterra, C., Rocca, E., Wu, H.: Long-time dynamics and optimal control of a diffuse interface model for tumor growth. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09562-5

  3. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field system related to tumor growth. Discret. Contin. Dyn. Syst. 35, 2423–2442 (2015)

    Article  MathSciNet  Google Scholar 

  4. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)

    Article  MathSciNet  Google Scholar 

  5. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discret. Contin. Dyn. Syst. Ser. S 10, 37–54 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30, 2518–2546 (2017)

    Article  MathSciNet  Google Scholar 

  7. Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Sliding mode control for a phase field system related to tumor growth. Appl. Math. Optim. 79, 647–670 (2019)

    Article  MathSciNet  Google Scholar 

  8. Colli, P., Gilardi, G., Sprekels, J.: Well-posedness and regularity for a fractional tumor growth model. Adv. Math. Sci. Appl. 28, 343–375 (2019)

    MATH  Google Scholar 

  9. Colli, P., Gilardi, G., Sprekels, J.: A distributed control problem for a fractional tumor growth model. Mathematics (2019). https://doi.org/10.3390/math7090792

  10. Colli, P., Gilardi, G., Sprekels, J.: Asymptotic analysis of a tumor growth model with fractional operators. Asymptot. Anal. (2019). https://doi.org/10.3233/ASY-191578

    Article  MATH  Google Scholar 

  11. Cristini, V., Lowengrub, J.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Leiden (2010)

    Book  Google Scholar 

  12. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.E.: Analysis of a diffuse interface model of multi-species tumor growth. Nonlinearity 30, 1639–1658 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ebenbeck, M., Garcke, H.: Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis. J. Differ. Equ. 266, 5998–6036 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ebenbeck, M., Knopf, P.: Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth. ESAIM Control Optim. Calc. Var. (2019). https://doi.org/10.1051/cocv/2019059

    Article  MATH  Google Scholar 

  16. Ebenbeck, M., Knopf, P.: Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation. Calc. Var. Partial Differ. Equ. (2019). https://doi.org/10.1007/s00526-019-1579-z

  17. Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)

    Article  Google Scholar 

  18. Frigeri, S., Lam, K.F., Rocca, E.: On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds.) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol. 22, pp. 217–254. Springer, Cham (2017)

  19. Frigeri, S., Lam, K.F., Rocca, E., Schimperna, G.: On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials. Commun. Math Sci. 16, 821–856 (2018)

    Article  MathSciNet  Google Scholar 

  20. Garcke, H., Lam, K.F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1, 318–360 (2016)

    Article  Google Scholar 

  21. Garcke, H., Lam, K.F.: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28, 284–316 (2017)

    Article  MathSciNet  Google Scholar 

  22. Garcke, H., Lam, K.F.: Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discret. Contin. Dyn. Syst. 37, 4277–4308 (2017)

    Article  MathSciNet  Google Scholar 

  23. Garcke, H., Lam, K.F.: On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms. In: Rocca, E., Stefanelli, U., Truskinovski, L., Visintin, A. (eds.) Trends on Applications of Mathematics to Mechanics. Springer INdAM Series, vol. 27, pp. 243–264 . Springer, Cham (2018)

  24. Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Model. Methods Appl. Sci. 26, 1095–1148 (2016)

    Article  MathSciNet  Google Scholar 

  25. Garcke, H., Lam, K.F., Nürnberg, R., Sitka, E.: A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28, 525–577 (2018)

    Article  MathSciNet  Google Scholar 

  26. Garcke, H., Lam, K.F., Rocca, E.: Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. 78, 495–544 (2018)

    Article  MathSciNet  Google Scholar 

  27. Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Math. Biomed. Eng. 28, 3–24 (2011)

    Article  MathSciNet  Google Scholar 

  28. Hawkins-Daarud, A., Prudhomme, S., van der Zee, K.G., Oden, J.T.: Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. J. Math. Biol. 67, 1457–1485 (2013)

    Article  MathSciNet  Google Scholar 

  29. Hilhorst, D., Kampmann, J., Nguyen, T.N., van der Zee, K.G.: Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Model. Methods Appl. Sci. 25, 1011–1043 (2015)

    Article  MathSciNet  Google Scholar 

  30. Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  31. Lions, J.-L.: Contrôle optimal de systèmes gouvernés par des equations aux dérivées partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  32. Miranville, A., Rocca, E., Schimperna, G.: On the long time behavior of a tumor growth model. J. Differ. Equ. 267, 2616–2642 (2019)

    Article  MathSciNet  Google Scholar 

  33. Oden, J.T., Hawkins, A., Prudhomme, S.: General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Model. Methods Appl. Sci. 20, 477–517 (2010)

    Article  MathSciNet  Google Scholar 

  34. Signori, A.: Optimal distributed control of an extended model of tumor growth with logarithmic potential. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-018-9538-1

  35. Signori, A.: Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach. Evol. Equ. Control Theory (2019). https://doi.org/10.3934/eect.2020003

  36. Signori, A.: Optimal treatment for a phase field system of Cahn–Hilliard type modeling tumor growth by asymptotic scheme. Math. Control Relat. Fields (2019). https://doi.org/10.3934/mcrf.2019040

  37. Signori, A.: Vanishing parameter for an optimal control problem modeling tumor growth. Asymptot. Anal. (2019). https://doi.org/10.3233/ASY-191546

    Article  MathSciNet  MATH  Google Scholar 

  38. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  39. Sprekels, J., Wu, H.: Optimal distributed control of a Cahn–Hilliard–Darcy system with mass sources. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09555-4

    Article  MATH  Google Scholar 

  40. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate Student in Mathematics, vol. 112. AMS, Providence, RI (2010)

  41. Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

    Article  MathSciNet  Google Scholar 

  42. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order splitting schemes for Cahn–Hilliard models with applications to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30, 180–203 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referee for the careful reading of the manuscript and for some useful suggestions. The research of Pierluigi Colli is supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022)—Dept. of Mathematics “F. Casorati”, University of Pavia. In addition, PC gratefully acknowledges some other support from the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) and the IMATI – C.N.R. Pavia, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Signori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colli, P., Signori, A. & Sprekels, J. Optimal Control of a Phase Field System Modelling Tumor Growth with Chemotaxis and Singular Potentials. Appl Math Optim 83, 2017–2049 (2021). https://doi.org/10.1007/s00245-019-09618-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09618-6

Keywords

Mathematics Subject Classification

Navigation