Skip to main content
Log in

Risk-Sensitive Ergodic Control of Reflected Diffusion Processes in Orthant

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We study risk-sensitive ergodic control problem for controlled diffusion processes in the non-negative orthant. We consider ergodic cost evaluation criteria. Under certain assumptions we first establish the existence of a solution of the corresponding HJB equation. In addition we completely characterize the optimal control in the space of stationary Markov controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  Google Scholar 

  2. Amann, H.: Dual semigroups and second order linear elliptic boundary value problem. Israel J. Math. 45(2–3), 225–254 (1983)

    Article  MathSciNet  Google Scholar 

  3. Amann, H., Lopez-Gomez, J.: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. J. Diff. Equ. 146, 336–374 (1998)

    Article  MathSciNet  Google Scholar 

  4. Arapostathis, A., Borkar, V.S., Ghosh, M.K.: Ergodic Control of Diffusion Processes. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  5. Arapostathis, A., Biswas, A. and Saha, S. Strict monotonicity of principal eigenvalues of elliptic operators in\(\mathbb{R}^{d}\)and risk-sensitive control,J.Math.Pures Appl. (2018), to appear, available at arXiv:1704.02571

  6. Arapostathis, A., Biswas, A.: Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions. Stoch. Process. Appl. 128(5), 1485–1524 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bagchi, A., Suresh, K.K.: Dynamic asset management with risk-sensitive criterion and non-negative factor constraints: a differential game approach. Stochastics 81(5), 503–530 (2009)

    Article  MathSciNet  Google Scholar 

  8. Benes̆, V.E.: Existence of optimal strategies based on specified information of a class of stochastic decision problems. SIAM J. Control. 8(2), 179–188 (1970)

    Article  MathSciNet  Google Scholar 

  9. Bensoussan, A., Lions, J.L.: Impulse Control and Quasi-Variational Inequalities. Gauthier-Vilars, England (1984)

    MATH  Google Scholar 

  10. Berestycki, H., Rossi, L.: Reaction-diffusion equations for population dynamics with forced speed II: cylinderical type domains. Discrete Contin. Dyn. Syst. 25, 19–61 (2009)

    Article  MathSciNet  Google Scholar 

  11. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  Google Scholar 

  12. Biswas, A., Borkar, V. S. and Kumar, S. K. Risk-sensitive control with near monotone cost, Appl. Math. Optim. 62(2), 145-163 (2009) Errata corriege I. ibid 62(2),165-167 (2010) Errata corriege II. ibid 62(3), 435-438 (2010)

  13. Biswas, A.: An eigenvalue approach to the risk-sensitive control problem in near monotone case. Systems Control Lett. 60(3), 181–184 (2011)

    Article  MathSciNet  Google Scholar 

  14. Biswas, A., Saha, S.: Zero-Sum Stochastic Differential Games with risk-sensitive cost, Appl. Math. Optim.(2018). arXiv:1704.02689

  15. Borkar, V., Budhiraja, A.: Ergodic control for constained diffusions: characterization using HJB equation. Siam J. Control Optim. 43(4), 1467–1492 (2005)

    Article  Google Scholar 

  16. Budhiraja, A.: An ergodic control problem for constrained diffusion processes: existence of optimal control. SIAM J. Control Optim. 42, 532–558 (2003)

    Article  MathSciNet  Google Scholar 

  17. Chung, K.L., Zhao, Z.: From Brownian motion to Schrodinger’s Equation, A Series of Comprehensive Studies in Mathematics 312. Springer, Berlin (1995)

    Book  Google Scholar 

  18. Di Fazio, G., Palagachev, D.K.: Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients. Comment. Math. Univ. Carolin. 37(3), 537–556 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Gauttam, S.K., Kumar, S.K., Pal, C.: Risk-Sensitive control of reflected diffusion process on orthrant. Pure Appl. Funct. Anal. 2(3), 477–510 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Ghosh, M.K., Pradhan, S.: Risk-sensitive stochastic differential game with reflecting diffusions. Stoch. Anal. Appl. 36(1), 1–27 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ghosh, M.K., Kumar, S.K.: Zero-sum stochastic differential games with reflecting diffusions. Comput. Appl. Math. 16(3), 237–246 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Ghosh, M.K., Kumar, S.K.: Nonzero-sum risk-sensitive stochastic differential games with reflecting diffusions. Comput. Appl. Math. 18(3), 355–368 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Ghosh, M.K., Kumar, S.K.: A stochastic differential game in the orthrant. J. Math. Anal. Appl. 265(1), 12–37 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ghosh, M.K., Kumar, S.K.: A nonzero-sum stochastic differential game in the orthant. J. Math. Anal. Appl. 305(1), 158–174 (2005)

    Article  MathSciNet  Google Scholar 

  25. Ghosh, M.K., Kumar, K.S., Pal, C.: Nonzero-sum risk-sensitive stochastic differential games. arXiv preprint arXiv:1604.01142 (2016)

  26. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  27. Huska, J.: Harnack inequality and exponetential separation for oblique derivative problems on Lipschitz domains. J. Differ. Equ. 226, 541–557 (2006)

    Article  MathSciNet  Google Scholar 

  28. Kushner, H.J., Martins, L.F.: Limit theorems for pathwise average cost per unit time problems for controlled queues in heavy traffic. Stoch. Stoch. Rep. 42, 25–51 (1993)

    Article  MathSciNet  Google Scholar 

  29. Lieberman, G.M.: Oblique Derivative Problems for Elliptic Equations. World Scientific, Hackensack (2013)

    Book  Google Scholar 

  30. Lieberman, G.M.: Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations. Trans. Am. Math. Soc. 304(1), 343–353 (1987)

    Article  MathSciNet  Google Scholar 

  31. Lions, P.L., Sznitman, A.S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure. Appl. Math. 37(4), 511–537 (1984)

    Article  MathSciNet  Google Scholar 

  32. Menaldi, J.L., Robin, M.: Remarks on risk-sensitive control problems. Appl. Math. Optim. 52(3), 297–310 (2005)

    Article  MathSciNet  Google Scholar 

  33. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  Google Scholar 

  34. Petrizi, S.: Principal eigenvalues for Isaacs operators with Neumann boundary conditions. Nonlinear Differ. Equ. Appl. 16(1), 79–107 (2009)

    Article  MathSciNet  Google Scholar 

  35. Veretennikov, A.Y.: On strong and weak solutions of one-dimensional stochastic equations with boundary conditions. Theory Probab. Appl. 26, 670–686 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Mrinal Kanti Ghosh for his suggestions and useful discussions. The author would also like to thank an anonymous referee for pointing out some errors in an earlier version of this paper. Referee’s review helped us to improve the paper. This work is partially supported by UGC Center for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Pradhan.

Ethics declarations

Conflicts of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S. Risk-Sensitive Ergodic Control of Reflected Diffusion Processes in Orthant. Appl Math Optim 83, 1739–1764 (2021). https://doi.org/10.1007/s00245-019-09606-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09606-w

Keywords

Mathematics Subject Classification

Navigation