Skip to main content
Log in

Optimal Distributed Control of a Cahn–Hilliard–Darcy System with Mass Sources

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study an optimal control problem for a two-dimensional Cahn–Hilliard–Darcy system with mass sources that arises in the modeling of tumor growth. The aim is to monitor the tumor fraction in a finite time interval in such a way that both the tumor fraction, measured in terms of a tracking type cost functional, is kept under control and minimal harm is inflicted to the patient by administering the control, which could either be a drug or nutrition. We first prove that the optimal control problem admits a solution. Then we show that the control-to-state operator is Fréchet differentiable between suitable Banach spaces and derive the first-order necessary optimality conditions in terms of the adjoint variables and the usual variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.-M., McFadden, G.-B., Wheeler, A.-A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30(1), 139–165 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Li, N.-K., Maini, P.-K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bosia, S., Conti, M., Grasselli, M.: On the Cahn–Hilliard–Brinkman system. Commun. Math. Sci. 13, 1541–1567 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Cahn, J.W., Hilliard, J.-E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    MATH  Google Scholar 

  5. Chen, Y., Wise, S.-M., Shenoy, V.-B., Lowengrub, J.-S.: A stable scheme for a nonlinear multiphase tumor growth model with an elastic membrane. Int. J. Numer. Methods Biomed. Eng. 30, 726–754 (2014)

    MathSciNet  Google Scholar 

  6. Colli, P., Farshbaf-Shaker, M.-H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53, 2696–2721 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field system related to tumor growth. Discret. Contin. Dyn. Syst. 35, 2423–2442 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4, 311–325 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 72, 195–225 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30, 2518–2546 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Colli, P., Gilardi, G., Sprekels, J.: Optimal velocity control of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions. SIAM J. Control Optim. 56, 1665–1691 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Colli, P., Gilardi, G., Sprekels, J.: Optimal velocity control of a convective Cahn–Hilliard system with double obstacles and dynamic boundary conditions: a ‘deep quench’ approach. J. Convex Anal. 26 (2019) (see also Preprint arXiv:1709.03892 [math. AP] (2017), 1–30)

  14. Conti, M., Giorgini, A.: The three-dimensional Cahn–Hilliard–Brinkman system with unmatched viscosities (2018). https://hal.archives-ouvertes.fr/hal-01559179

  15. Cristini, V., Lowengrub, J.-S.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  16. Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: Analysis of a diffuse interface model for multi-species tumor growth. Nonlinearity 30(4), 1639 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Della Porta, F., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic potential. Nonlinearity 31, 4851 (2018)

  18. Della Porta, F., Grasselli, M., On the nonlocal Cahn–Hilliard–Brinkman and Cahn–Hilliard–Hele–Shaw systems. Commun. Pure Appl. Anal. 15, 299–317 (2016), Erratum: Commun. Pure Appl. Anal. 16, 369–372 (2017)

  19. Fasano, A., Bertuzzi, A., Gandolfi, A.: Mathematical Modeling of Tumour Growth and Treatment, Complex Systems in Biomedicine, pp. 71–108. Springer, Milan (2006)

    MATH  Google Scholar 

  20. Feng, X., Wise, S.-M.: Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Frieboes, H.-B., Jin, F., Chuang, Y.-L., Wise, S.-M., Lowengrub, J.-S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J. Theor. Biol. 264, 1254–1278 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Friedman, A.: Mathematical analysis and challenges arising from models of tumor growth. Math. Models Methods Appl. Sci. 17, 1751–1772 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)

    MATH  Google Scholar 

  24. Frigeri, S., Grasselli, M., Sprekels, J.: Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim. (2018). https://doi.org/10.1007/s00245-018-9524-7

  25. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in two dimensions. SIAM J. Control. Optim. 54, 221–250 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Frigeri, S., Lam, K.-F., Rocca, E., Schimperna, G.: On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials. Commun. Math. Sci. 16, 821–856 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Garcke, H., Lam, K.-F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1(3), 318–360 (2016)

    MATH  Google Scholar 

  28. Garcke, H., Lam, K.-F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26(6), 1095–1148 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Garcke, H., Lam, K.-F., Rocca, E.: Optimal control of treatment time in a diffuse interface model for tumour growth. Appl. Math. Optim. (2017). https://doi.org/10.1007/s00245-017-9414-4

  30. Garcke, H., Lam, K.-F.: On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms. In: Rocca, E., Stefanelli, U., Truskinovsky, L., Visintin, A. (eds.) Trends in Applications of Mathematics to Mechanics, Springer INdAM Series, vol. 27. Springer, Berlin (2018)

    Google Scholar 

  31. Garcke, H., Lam, K.-F., Nürnberg, R., Sitka, E.: A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28(3), 525–577 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Giorgini, A., Grasselli, M., Wu, H.: The Cahn–Hilliard–Hele–Shaw system with singular potential. Ann. Inst. H. Poincare Anal. Non Lineaire 35(4), 1079–1118 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Hawkins-Daarud, A., van der Zee, K.-G., Oden, J.-T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Meth. Biomed. Eng. 28, 3–24 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn–Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50, 388–418 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Hintermüller, M., Wegner, D.: Optimal control of a semi-discrete Cahn–Hilliard–Navier–Stokes system. SIAM J. Control Optim. 52, 747–772 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Hintermüller, M., Wegner, D.: Distributed and boundary control problems for the semi-discrete Cahn–Hilliard/Navier–Stokes system with non-smooth Ginzburg–Landau energies. In: Topological Optimization and Optimal Transport, Radon Series on Computational and Applied Mathematics, vol. 17, pp. 40–63 (2017)

  37. Hintermüller, H., Keil, M., Wegner, D.: Optimal control of a semi-discrete Cahn–Hilliard–Navier–Stokes system with non-matched fluid densities. SIAM J. Control Optim. 55, 1954–1989 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Jiang, J., Wu, H., Zheng, S.: Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259, 3032–3077 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Lowengrub, J.-S., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Lowengrub, J.-S., Titi, E.-S., Zhao, K.: Analysis of a mixture model of tumor growth. Eur. J. Appl. Math. 24, 691–734 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in three dimensions. SIAM J. Control Optim. 53, 1654–1680 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Graduate Studies in Mathematics, vol. 112. AMS, Providence (2010)

    MATH  Google Scholar 

  44. Wang, X.-M., Wu, H.: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot. Anal. 78, 217–245 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Wang, X.-M., Zhang, Z.-F.: Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 367–384 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Wise, S.-M.: Unconditionally stable finite difference, nonlinear multigrid simulations of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Wise, S.-M., Lowengrub, J.-S., Frieboes, H.-B., Cristini, V.: Three dimensional multispecies nonlinear tumor growth-I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Wise, S.-M., Lowengrub, J.-S., Cristini, V.: An adaptive multigrid algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. 53, 1–20 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, X.-P., Liu, C.-C.: Optimal control of the convective Cahn–Hilliard equation. Appl. Anal. 92, 1028–1045 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, X.-P., Liu, C.-C.: Optimal control of the convective Cahn–Hilliard equation in 2D case. Appl. Math. Optim. 70, 61–82 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her careful reading and helpful suggestions. The research of H. Wu is partially supported by NNSFC Grant No. 11631011 and the Shanghai Center for Mathematical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprekels, J., Wu, H. Optimal Distributed Control of a Cahn–Hilliard–Darcy System with Mass Sources. Appl Math Optim 83, 489–530 (2021). https://doi.org/10.1007/s00245-019-09555-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09555-4

Keywords

Mathematics Subject Classification

Navigation