Optimal Control of a Vlasov–Poisson Plasma by Fixed Magnetic Field Coils

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the Vlasov–Poisson system that is equipped with an external magnetic field to describe the time evolution of the distribution function of a plasma. An optimal control problem where the external magnetic field is the control itself has already been investigated by Knopf (Calc Var 57:134, 2018). However, in real technical applications it will not be possible to choose the control field in such a general fashion as it will be induced by fixed field coils. In this paper we will use the fundamentals that were established by Knopf (Calc Var 57:134, 2018) to analyze an optimal control problem where the magnetic field is a superposition of the fields that are generated by N fixed magnetic field coils. Thereby, the aim is to control the plasma in such a way that its distribution function matches a desired distribution function at some certain final time T as closely as possible. This problem will be analyzed with respect to the following topics: existence of a globally optimal solution, necessary conditions of first order for local optimality, derivation of an optimality system, sufficient conditions of second order for local optimality and uniqueness of the optimal control under certain conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ahmad Ali, A., Deckelnick, K., Hinze, M.: Global minima for semilinear optimal control problems. Comput. Optim. Appl. 65(1), 261–288 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Diff. Equ. 25(3), 342–364 (1977)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bradley, M.E., Lenhart, S.M.: Bilinear optimal control of a Kirchhoff plate via internal controllers. In: Malanowski, K. (ed.) Modelling and Optimization of Distributed Parameter Systems (Warsaw 1995), pp. 233–240. Chapman & Hall, New York (1996)

    Google Scholar 

  4. 4.

    Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of a Vlasov–Poisson plasma with magnetic confinement. Kinet. Relat. Models 5(4), 729–742 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Caprino, S., Cavallaro, G., Marchioro, C.: On a magnetically confined plasma with infinite charge. SIAM J. Math. Anal. 46(1), 133–164 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Caprino, S., Cavallaro, G., Marchioro, C.: A Vlasov–Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinet. Relat. Models 9(4), 657–686 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  9. 9.

    Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60(3), 1059–1072 (2000)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Glass, O.: On the controllability of the Vlasov-Poisson system. J. Diff. Equ. 195(2), 332–379 (2003)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Glass, O., Han-Kwan, D.: On the controllability of the Vlasov–Poisson system in the presence of external force fields. J. Diff. Equ. 252(10), 5453–5491 (2012)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Glass, O., Han-Kwan, D.: On the controllability of the relativistic Vlasov–Maxwell system. J. Math. Pures Appl. 103(3), 695–740 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Knopf, P.: Optimal control of a Vlasov-Poisson plasma by an external magnetic field. Calc. Var. 57, 134 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kurth, R.: Das Anfangswertproblem der Stellardynamik. Z. Astrophys. 30, 213–229 (1952)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Lieb, E.H., Loss, M.: Analysis Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  16. 16.

    Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the \(3\)-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415–430 (1991)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nguyen, T.T., Nguyen, T.V., Strauss, W.A.: Erratum to: Global magnetic confinement for the 1.5D Vlasov–Maxwell system [MR3294216]. Kinet. Relat. Models 8(3), 615–616 (2015)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Nguyen, T.T., Nguyen, T.V., Strauss, W.A.: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinet. Relat. Models 8(1), 153–168 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Diff. Equ. 95(2), 281–303 (1992)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Rein, G.: Collisionless kinetic equations from astrophysics—the Vlasov–Poisson system. In: Dafermos, C.M. (ed.) Handbook of Differential Equations: Evolutionary Equations, pp. 383–476. Elsevier/North-Holland, Amsterdam (2007)

    Google Scholar 

  21. 21.

    Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Comm. Partial Diff. Equ. 16(8–9), 1313–1335 (1991)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Skubachevskii, A.L.: Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field. Uspekhi Mat. Nauk 69(2(416)), 107–148 (2014)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Tröltzsch, F.: Optimal control of partial differential equations. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. Theory, methods and applications. (2010) Translated from the 2005 German original by Jürgen Sprekels

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrik Knopf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knopf, P., Weber, J. Optimal Control of a Vlasov–Poisson Plasma by Fixed Magnetic Field Coils. Appl Math Optim 81, 961–988 (2020). https://doi.org/10.1007/s00245-018-9526-5

Download citation

Keywords

  • Vlasov–Poisson equation
  • Optimal control with PDE constraints
  • Nonlinear partial differential equations
  • Calculus of variations

Mathematics Subject Classification

  • 49J20
  • 35Q83
  • 82D10