Skip to main content
Log in

Weak Solutions to Unsteady and Steady Models of Conductive Magnetic Fluids

Applied Mathematics & Optimization Submit manuscript

Cite this article


We study a nonlinear coupling system of partial differential equations describing the dynamic of a magnetic fluid with internal rotations. The present mathematical model generalizes those discussed previously in the literature since actually the fluid is electrically conducting inducing additional nonlinearities in the problem and the dynamics of the magnetic field is described by the quasi-static Maxwell equations instead of the usual magnetostatic ones. We prove existence of weak solutions with finite energy first for the unsteady problem then for the steady one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others


  1. Aggoune, F., Hamdache, K., Hamroun, D.: Global weak solutions to magnetic fluid flows with nonlinear Maxwell–Cattaneo heat transfer law. J. Math. Fluids Mech. 17, 103–127 (2015)

    Article  MathSciNet  Google Scholar 

  2. Amirat, Y., Hamdache, K.: Strong solutions to the equations of a ferrofluid model. J. Math. Anal. Appl. 353(1), 271–294 (2009)

    Article  MathSciNet  Google Scholar 

  3. Amirat, Y., Hamdache, K.: Heat transfer in incompressible magnetic fluid. J. Math. Fluid Mech. 14, 217–247 (2012)

    Article  MathSciNet  Google Scholar 

  4. Amirat, Y., Hamdache, K.: Global weak solutions to the equations of thermal convection in micropolar fluids subjected to hall current. NonLinear Anal. 102, 186–207 (2014)

    Article  MathSciNet  Google Scholar 

  5. Amirat, Y., Hamdache, K., Murat, F.: Global weak solutions to equations of motion for magnetic fluids. J. Math. Fluid Mech. 10(3), 326–351 (2008)

    Article  MathSciNet  Google Scholar 

  6. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bulíček, M., Feireisl, E., Màlek, J.: A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. Real World Appl. 10, 992–1015 (2009)

    Article  MathSciNet  Google Scholar 

  8. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes Equations. Nonlinearity 13, 249–255 (2000)

    Article  MathSciNet  Google Scholar 

  9. Farr, Q.: Local well-posedness and prodi-serrin type conditions for models of ferrohydrodynamics. Department of Mathematical and Statistical Sciences, University of Alberta, Thesis of Master of Science in Applied Mathematics (2016)

  10. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, vol. 8, 2nd edn. Pergamon, New York (1984)

    Google Scholar 

  12. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars (1969)

  13. Lions, P.L.: Mathematical Topics in Fluid Mechanics. vol. 1: incompressible Models. Oxford Science Publications, Oxford (1996)

    MATH  Google Scholar 

  14. Lukaszewicz, G.: Micropolar Fluid Theory. Birkhauser-Boston, Boston (1999)

    Book  Google Scholar 

  15. Nochetto, R.H., Salgado, A.J., Tomas, I.: The equations of hydrodynamics: modelling and numerical methods. Math. Models Methods Appl. Sci. 26(13), 2393–2449 (2016)

    Article  MathSciNet  Google Scholar 

  16. Rosensweig, R.E.: Ferrofluids: Magnetically controllable fluids and their applications. In: Odenbache, S. (ed.) Lecture Notes in Physics. Springer, Heidelberg, vol. 594, pp. 61–84 (2002)

  17. Rozensweig, R.E.: Basic equations for magnetic fluids with internal rotation. In: S. Odenbach (ed.) Ferrofluids, Magnetically Controllable Fluids and Their Applications, Lecture Notes in Physics Springer, pp. 61–79 (2002)

  18. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

    Google Scholar 

  19. Shinbrot, M.: The energy equation for the Navier–Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)

    Article  MathSciNet  Google Scholar 

  20. Shliomis, M.I.: Ferrofluids: Magnetically controllable fluids and their applications. In: Odenbache, S. (ed.) Lecture Notes in Physics, vol. 594, pp. 85–111. Springer, Heidelberg (2002)

  21. Simon, J.: Compact sets in \(L^p(0, T; B)\). Ann. Math. Pura Appl. CXLVI, 65–96 (1987)

    MATH  Google Scholar 

  22. Tan, Z., Wang, Y.: Global analysis for strong solutions to the equations of a ferrofluid flow. J. Math. Anal. Appl. 364(2), 424–436 (2010)

    Article  MathSciNet  Google Scholar 

  23. Temam, R.: Navier–Stokes Equations, 3rd (Revised) Edition. Elsevier Science Publishers B.V., Amsterdam (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Djamila Hamroun.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdache, K., Hamroun, D. Weak Solutions to Unsteady and Steady Models of Conductive Magnetic Fluids. Appl Math Optim 81, 479–509 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification