Weak Solutions to Unsteady and Steady Models of Conductive Magnetic Fluids

  • Kamel Hamdache
  • Djamila Hamroun


We study a nonlinear coupling system of partial differential equations describing the dynamic of a magnetic fluid with internal rotations. The present mathematical model generalizes those discussed previously in the literature since actually the fluid is electrically conducting inducing additional nonlinearities in the problem and the dynamics of the magnetic field is described by the quasi-static Maxwell equations instead of the usual magnetostatic ones. We prove existence of weak solutions with finite energy first for the unsteady problem then for the steady one.


Navier–Stokes equations Bloch–Torrey equation Quasi-static Maxwell equations Magnetization Internal rotations 

Mathematics Subject Classification

35Q30 35Q35 35Q79 76D05 76W05 76U05 


  1. 1.
    Aggoune, F., Hamdache, K., Hamroun, D.: Global weak solutions to magnetic fluid flows with nonlinear Maxwell–Cattaneo heat transfer law. J. Math. Fluids Mech. 17, 103–127 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Amirat, Y., Hamdache, K.: Strong solutions to the equations of a ferrofluid model. J. Math. Anal. Appl. 353(1), 271–294 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Amirat, Y., Hamdache, K.: Heat transfer in incompressible magnetic fluid. J. Math. Fluid Mech. 14, 217–247 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Amirat, Y., Hamdache, K.: Global weak solutions to the equations of thermal convection in micropolar fluids subjected to hall current. NonLinear Anal. 102, 186–207 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Amirat, Y., Hamdache, K., Murat, F.: Global weak solutions to equations of motion for magnetic fluids. J. Math. Fluid Mech. 10(3), 326–351 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. Funct. Anal. 87, 149–169 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bulíček, M., Feireisl, E., Màlek, J.: A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. Real World Appl. 10, 992–1015 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes Equations. Nonlinearity 13, 249–255 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Farr, Q.: Local well-posedness and prodi-serrin type conditions for models of ferrohydrodynamics. Department of Mathematical and Statistical Sciences, University of Alberta, Thesis of Master of Science in Applied Mathematics (2016)Google Scholar
  10. 10.
    Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, vol. 8, 2nd edn. Pergamon, New York (1984)MATHGoogle Scholar
  12. 12.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars (1969)Google Scholar
  13. 13.
    Lions, P.L.: Mathematical Topics in Fluid Mechanics. vol. 1: incompressible Models. Oxford Science Publications, Oxford (1996)MATHGoogle Scholar
  14. 14.
    Lukaszewicz, G.: Micropolar Fluid Theory. Birkhauser-Boston, Boston (1999)CrossRefMATHGoogle Scholar
  15. 15.
    Nochetto, R.H., Salgado, A.J., Tomas, I.: The equations of hydrodynamics: modelling and numerical methods. Math. Models Methods Appl. Sci. 26(13), 2393–2449 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rosensweig, R.E.: Ferrofluids: Magnetically controllable fluids and their applications. In: Odenbache, S. (ed.) Lecture Notes in Physics. Springer, Heidelberg, vol. 594, pp. 61–84 (2002)Google Scholar
  17. 17.
    Rozensweig, R.E.: Basic equations for magnetic fluids with internal rotation. In: S. Odenbach (ed.) Ferrofluids, Magnetically Controllable Fluids and Their Applications, Lecture Notes in Physics Springer, pp. 61–79 (2002)Google Scholar
  18. 18.
    Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)Google Scholar
  19. 19.
    Shinbrot, M.: The energy equation for the Navier–Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shliomis, M.I.: Ferrofluids: Magnetically controllable fluids and their applications. In: Odenbache, S. (ed.) Lecture Notes in Physics, vol. 594, pp. 85–111. Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Simon, J.: Compact sets in \(L^p(0, T; B)\). Ann. Math. Pura Appl. CXLVI, 65–96 (1987)MATHGoogle Scholar
  22. 22.
    Tan, Z., Wang, Y.: Global analysis for strong solutions to the equations of a ferrofluid flow. J. Math. Anal. Appl. 364(2), 424–436 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Temam, R.: Navier–Stokes Equations, 3rd (Revised) Edition. Elsevier Science Publishers B.V., Amsterdam (1984)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DVRCLéonard de Vinci Pôle UniversitaireParis la Défense CedexFrance
  2. 2.Laboratoire AMNEDP, Faculté de MathématiquesUniversité USTHBAlgiersAlgeria

Personalised recommendations