Alekseev, V., Tikhomirov, V., Fomin, S.: Optimal control. In: Contemporary Soviet Mathematics, Springer Science & Business Media (1987)
Baudouin, L., Cerpa, E., Crépeau, E., Mercado, A.: Lipschitz stability in an inverse problem for the Kuramoto–Sivashinsky equation. Appl. Anal. 92(10), 2084–2102 (2013)
MathSciNet
MATH
Google Scholar
Cahn, J.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961)
Google Scholar
Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)
MATH
Google Scholar
Cahn, J., Hilliard, J.: Spinodal decomposition. Reprise Acta Metall. 19(2), 151–161 (1971)
Google Scholar
Carreño, N.: Local controllability of the N-dimensional Boussinesq system with N-1 scalar controls in an arbitrary control domain. Math. Control Relat. Fields 2(4), 361–382 (2012)
MathSciNet
MATH
Google Scholar
Carreño, N., Cerpa, E.: Local controllability of the stabilized Kuramoto–Sivashinsky system by a single control acting on the heat equation. J. Math. Pures Appl. 106(4), 670–694 (2016)
MathSciNet
MATH
Google Scholar
Carreño, N., Guerrero, S.: Local null controllability of the N-dimensional Navier–Stokes system with N-1 scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 14(1), 139–152 (2013)
MathSciNet
MATH
Google Scholar
Carreño, N., Guzmán, P.: On the cost of null controllability of a fourth-order parabolic equation. J. Differ. Equat. 261(11), 6485–6520 (2016)
MathSciNet
MATH
Google Scholar
Cerpa, E., Mercado, A.: Local exact controllability to the trajectories of the 1-D Kuramoto–Sivashinsky equation. J. Differ. Equat. 250(4), 2024–2044 (2011)
MathSciNet
MATH
Google Scholar
Cerpa, E., Mercado, A., Pazoto, A.: On the boundary control of a parabolic system coupling KS-KdV and heat equations. Sci. Ser. A 22, 55–74 (2012)
MathSciNet
MATH
Google Scholar
Cerpa, E., Mercado, A., Pazoto, A.: Null controllability of the stabilized Kuramoto–Sivashinsky system with one distributed control. SIAM J. Control Optim. 53(3), 1543–1568 (2015)
MathSciNet
MATH
Google Scholar
Cerpa, E., Guzmán, P., Mercado, A.: On the control of the linear Kuramoto–Sivashinsky equation. ESAIM Control Optim. Calc. Var. 23(1), 165–194 (2017)
MathSciNet
MATH
Google Scholar
Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Functional and Variational Methods, vol. 2. Springer, Berlin (2000)
MATH
Google Scholar
Díaz, J., Ramos, Á.: On the approximate controllability for higher order parabolic nonlinear equations of the Cahn–Hilliard type, In: Control and Estimation of Distributed Parameters Systems, International Series of Numerical Mathematics, vol. 126, Birkhauser (1998)
Elliott, C.: The Cahn–Hilliard model for the kinetics of phase separation, In: Mathematical Models for Phase Change Problems, International Series on Numerical Mathematics, vol. 88, Birkhauser (1989)
Elliott, C., Zheng, S.: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)
MATH
Google Scholar
Fernández-Cara, E., Guerrero, S., Imanuvilov, O., Puel, J.-P.: Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. 83(12), 1501–1542 (2004)
MathSciNet
MATH
Google Scholar
Fernández-Cara, E., Guerrero, S., Imanuvilov, O., Puel, J.-P.: Some controllability results for the N-dimensional Navier–Stokes system and Boussinesq systems with N-1 scalar controls. SIAM J. Control Optim. 45(1), 146–173 (2006)
MathSciNet
MATH
Google Scholar
Fursikov, A., Imanuvilov, O.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Seoul National University, Seoul (1996)
MATH
Google Scholar
Gao, P.: : Insensitizing controls for the Cahn–Hilliard type equation. Electron. J. Qual. Theory Differ. Equt. 35, 1–22 (2014)
MathSciNet
MATH
Google Scholar
Gao, P.: A new global Carleman estimate for the one-dimensional Kuramoto–Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem. Nonlinear Anal. 117, 133–147 (2015)
MathSciNet
MATH
Google Scholar
Gao, P.: A new global Carleman estimate for Cahn–Hilliard type equation and its applications. J. Differ. Equat. 260(1), 427–444 (2016)
MathSciNet
MATH
Google Scholar
Guerrero, S.: Local exact controllability to the trajectories of the Boussinesq system. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(1), 29–61 (2006)
MathSciNet
MATH
Google Scholar
Guzmán, Patricio: Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto–Sivashinsky type equation. J. Math. Anal. Appl. 408(1), 275–290 (2013)
MathSciNet
MATH
Google Scholar
Imanuvilov, Oleg: Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 6, 39–72 (2001)
MathSciNet
MATH
Google Scholar
Novick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, pp. 201–228. Elsevier, Amsterdam (2008)
Google Scholar
Novick-Cohen, A., Segel, L.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10(3), 277–298 (1984)
MathSciNet
Google Scholar
Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68, Springer, New York (1997)
Yong, J., Zheng, S.: Feedback stabilization and optimal control for the Cahn–Hilliard equation. Nonlinear Anal. 17(5), 431–444 (1991)
MathSciNet
MATH
Google Scholar
Zheng, J.: Time optimal controls of the Cahn–Hilliard equation with internal control. Optim. Control Appl. Methods 36(4), 566–582 (2015)
MathSciNet
MATH
Google Scholar
Zheng, S.: Asymptotic behavior of solution to the Cahn–Hillard equation. Appl. Anal. 23(3), 165–184 (1986)
MathSciNet
MATH
Google Scholar
Zhou, Z.: Observability estimate and null controllability for one-dimensional fourth order parabolic equation. Taiwan. J. Math. 16(6), 1991–2017 (2012)
MathSciNet
MATH
Google Scholar