Skip to main content
Log in

Boundary of Maximal Monotone Operators Values

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We characterize in Hilbert spaces the boundary of the values of maximal monotone operators, by means only of the values at nearby points, which are close enough to the reference point but distinct of it. This allows to write the values of such operators using finite convex combinations of the values at at most two nearby points. We also provide similar characterizations for the normal cone to prox-regular sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly, S., Hantoute, A., Nguyen, B.T.: Equivalence between differential inclusions involving prox-regular sets and maximal monotone operators. arXiv:1704.04913

  2. Bernard, F., Thibault, L.: Uniform prox-regularity of functions and epigraphs in Hilbert spaces. Nonlinear Anal. 60(2), 187–207 (2005)

    Article  MathSciNet  Google Scholar 

  3. Brézis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans Les espaces de Hilbert. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  4. Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim. Lett. 9(3), 513–521 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cánovas, M.J., Henrion, R., López, M.A., Parra, J.: Outer limit of subdifferentials and calmness moduli in linear and nonlinear programming. J. Optim. Theory Appl. 169(3), 925–952 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var. Anal. 2, 375–389 (2014)

    Article  MathSciNet  Google Scholar 

  7. Clarke, F.H., Ledyaev, YuS, Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

    Google Scholar 

  8. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  9. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. B 104, 437–464 (2005)

    Article  MathSciNet  Google Scholar 

  10. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13(2), 603–618 (2002)

    Article  MathSciNet  Google Scholar 

  11. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Nonconvex Optimization and Its Applications, vol. 60. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  12. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for semi-infinite convex constraint systems. SIAM J. Optim. 20(4), 2080–2096 (2010)

    Article  MathSciNet  Google Scholar 

  13. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20(6), 3280–3296 (2010)

    Article  MathSciNet  Google Scholar 

  14. Mazade, M., Thibault, L.: Regularization of differential variational inequalities with locally prox-regular sets. Math. Program. B 139(1–2), 243–269 (2013)

    Article  MathSciNet  Google Scholar 

  15. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33(1), 209–216 (1970)

    Article  MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  17. Rockafellar, R.T., Wets, R.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

    Google Scholar 

  18. Thibault, L., Zagrdony, D.: Integration of subdifferentials of lower semicontinuous functions in Banach spaces. J. Math. Anal. Appl. 189, 33–58 (1995)

    Article  MathSciNet  Google Scholar 

  19. Valadier, M.: Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions convexes. C. R. Acad. Sci. Paris Sér. A-B Math. 268, 39–42 (1969)

    MATH  Google Scholar 

  20. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Inc., River Edge (2002)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees for their careful reading and for providing valuable suggestions and observations which allowed us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Hantoute.

Additional information

Research partially supported by projects Fondecyt-Conicyt No. 1151003, Conicyt-Pcha/Doctorado Nacional/2014-63140104, Mathamsud 17-Math-06, Conicyt-Redes No. 150040, and Conicyt PIA/concurso apoyo a centros científicos y tecnológicos de excelencia con financiamiento BASAL AFB170001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hantoute, A., Nguyen, B.T. Boundary of Maximal Monotone Operators Values. Appl Math Optim 82, 225–243 (2020). https://doi.org/10.1007/s00245-018-9498-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9498-5

Keywords

Mathematics Subject Classification

Navigation