(p, 2)-Equations with a Crossing Nonlinearity and Concave Terms


We consider a parametric Dirichlet problem driven by the sum of a p-Laplacian (\(p>2\)) and a Laplacian (a (p, 2)-equation). The reaction consists of an asymmetric \((p-1)\)-linear term which is resonant as \(x \rightarrow - \infty \), plus a concave term. However, in this case the concave term enters with a negative sign. Using variational tools together with suitable truncation techniques and Morse theory (critical groups), we show that when the parameter is small the problem has at least three nontrivial smooth solutions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Am. Math. Soc. 196(915), 1–70 (2008)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Allegretto, W., Huang, Y.X.: A Picone’s identity for the $p$-Laplacian and applications. Nonlinear Anal. 32(7), 819–830 (1998)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chang, K.-C.: Methods in Nonlinear Analysis. Springer, Berlin (2005)

    Google Scholar 

  6. 6.

    D’Aguì, G., Marano, S.A., Papageorgiou, N.S.: Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction. J. Math. Anal. Appl. 433(2), 1821–1845 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    de Paiva, F.O., Massa, E.: Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal. 66(12), 2940–2946 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    de Paiva, F.O., Presoto, A.E.: Semilinear elliptic problems with asymmetric nonlinearities. J. Math. Anal. Appl. 409(1), 254–262 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    García Azorero, J.P., Peral Alonso, I., Manfredi, J.J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2(3), 385–404 (2000)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications, vol. 9. Chapman and Hall/CRC Press, Boca Raton (2006)

    Google Scholar 

  11. 11.

    Gasiński, L., Papageorgiou, N.S.: Resonant equations with the Neumann $p$-Laplacian plus an indefinite potential. J. Math. Anal. Appl. 422(2), 1146–1179 (2015)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gasiński, L., Papageorgiou, N.S.: Exercises in Analysis, Part 2. Nonlinear Analysis. Springer, Cham (2016)

    Google Scholar 

  13. 13.

    Guo, Z., Zhang, Z.: $W^{1, p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 286(1), 32–50 (2003)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  15. 15.

    Liang, Z., Su, J.: Multiple solutions for semilinear elliptic boundary value problems with double resonance. J. Math. Anal. Appl. 354(1), 147–158 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Marano, S.A., Papageorgiou, N.S.: Multiple solutions to a Dirichlet problem with $p$-Laplacian and nonlinearity depending on a parameter. Adv. Nonlinear Anal. 1(3), 257–275 (2012)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Marano, S.A., Papageorgiou, N.S.: Positive solutions to a Dirichlet problem with $p$-Laplacian and concave–convex nonlinearity depending on a parameter. Commun. Pure Appl. Anal. 12(2), 815–829 (2013)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Google Scholar 

  20. 20.

    Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5(1), 1–16 (1966)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Papageorgiou, N.S., Rǎdulescu, V.D.: Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance. Appl. Math. Optim. 69(3), 393–430 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Papageorgiou, N.S., Rǎdulescu, V.D.: Neumann problems with indefinite and unbounded potential and concave terms. Proc. Am. Math. Soc. 143(11), 4803–4816 (2015)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Papageorgiou, N.S., Rǎdulescu, V.D.: Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discret. Contin. Dyn. Syst. 35(10), 5003–5036 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Papageorgiou, N.S., Rǎdulescu, V.D.: Nonlinear nonhomogeneous Robin problems with superlinear reaction term. Adv. Nonlinear. Stud. 16(4), 737–764 (2016)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Papageorgiou, N.S., Winkert, P.: Resonant ($p$,2)-equations with concave terms. Appl. Anal. 94(2), 342–360 (2015)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Perera, K.: Multiplicity results for some elliptic problems with concave nonlinearities. J. Differ. Equ. 140(1), 133–141 (1997)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser, Basel (2007)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Calogero Vetro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papageorgiou, N.S., Vetro, C. & Vetro, F. (p, 2)-Equations with a Crossing Nonlinearity and Concave Terms. Appl Math Optim 81, 221–251 (2020). https://doi.org/10.1007/s00245-018-9482-0

Download citation


  • p-Laplacian
  • Concave term
  • Crossing nonlinearity
  • Nonlinear regularity
  • Nonlinear maximum principle
  • Critical groups
  • Multiple smooth solutions

Mathematics Subject Classification

  • 35J20
  • 35J60
  • 58E05