Skip to main content
Log in

Optimal Control of the Multiphase Stefan Problem

Applied Mathematics & Optimization Submit manuscript

Abstract

We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the \(L_2\)-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform \(L_{\infty }\) bound, and \(W_2^{1,1}\)-energy estimate for the discrete multiphase Stefan problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Probl. Imaging 7(2), 307–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Probl. Imaging 10(4), 869–898 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulla, U.G., Goldfarb, J.: Fréchet differentiability in Besov spaces in the optimal control of parabolic free boundary problems. Inverse Ill-Posed Probl. 26, 2 (2018)

    MATH  Google Scholar 

  4. Abdulla, U.G., Cosgrove, E., Goldfarb, J.: On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolut. Equ. Control Theory 6(3), 319–344 (2017)

    Article  MATH  Google Scholar 

  5. Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, Berlin (1995)

    MATH  Google Scholar 

  6. Baumeister, J.: Zur optimalen Steuerung von freien Randwertaufgaben. ZAMM 60, T333–T335 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bell, J.B.: The non-characteristic Cauchy problem for a class of equations with time dependence. I. Problem in one space dimension. SIAM J. Math. Anal. 12, 759–777 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Embedding Theorems. Winston & Sons, Washington (1978)

    MATH  Google Scholar 

  9. Budak, B.M., Vasil’eva, V.N.: On the solution of the inverse Stefan problem. Sov. Math. Dokl 13, 811–815 (1972)

    MATH  Google Scholar 

  10. Budak, B.M., Vasil’eva, V.N.: The solution of the inverse Stefan problem. USSR Comput. Math. Math. Phys. 13, 130–151 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Budak, B.M., Vasil’eva, V.N.: On the solution of Stefan’s converse problem II. USSR Comput. Math. Math. Phys. 13, 97–110 (1973)

    Article  MATH  Google Scholar 

  12. Cannon, J.R.: A Cauchy problem for the heat equation. Ann. Math. 66, 155–166 (1964)

    MathSciNet  MATH  Google Scholar 

  13. Cannon, J.R., Douglas, J.: The Cauchy problem for the heat equation. SIAM J. Numer. Anal 4, 317–336 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carasso, A.: Determining surface temperatures from interior observations. SIAM J. Appl. Math. 42, 558–574 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, R.E.: The Cauchy problem for a linear parabolic equation. J. Math. Anal. Appl. 71, 167–186 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ewing, R.E., Falk, R.S.: Numerical approximation of a Cauchy problem for a parabolic partial differential equation. Math. Comput. 33, 1125–1144 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fasano, A., Primicerio, M.: General free boundary problems for heat equations. J. Math. Anal. Appl. 57, 694–723 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gol’dman, N.L.: Inverse Stefan Problems. Mathematics and Its Applications, vol. 412, pp. viii + 250. Kluwer Academic Publishers Group, Dordrecht (1997)

  19. Gol’dman, N.L.: Properties of solutions of the inverse Stefan problem. Differ. Equ. 39, 66–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoffmann, K.-H., Niezgodka, M.: Control of Parabolic Systems Involving Free Boundary. In: Proceedings of International Conference on Free Boundary Problems (1981)

  21. Hoffmann, K.-H., Sprekels, J.: Real time control of free boundary in a two-phase Stefan problem. Numer. Funct. Anal. Optim. 5, 47–76 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoffmann, K.-H., Sprekels, J.: On the identification of heat conductivity and latent heat in a one-phase Stefan problem. Control Cybern. 15, 37–51 (1986)

    MathSciNet  Google Scholar 

  23. Jochum, P.: The inverse Stefan problem as a problem of nonlinear approximation theory. J. Approx. Theory 30, 81–98 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jochum, P.: The numerical solution of the inverse Stefan problem. Numer. Math. 34, 411–429 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamenomostskaya, S.L.: Certain problems for equations of parabolic type with unknown boundary, Candidate’s Dissertation, Moskov. Gos. University (1958)

  26. Knabner, P.: Stability theorems for general free boundary problem of the stefan type and applications. Meth. Ser. Numer. Meth. Verf. Math. Phys. 25, 95–116 (1983)

    MathSciNet  MATH  Google Scholar 

  27. Ladyzenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of the Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1967)

    Google Scholar 

  28. Lurye, K.A.: Optimal Control in Problems of Mathematical Physics. Nauka, Moscow (1975)

    Google Scholar 

  29. Meyrmanov, A.M.: The Stefan Problem. Walter de Gruyter, Berlin (1992)

    Book  Google Scholar 

  30. Niezgodka, M.: Control of parabolic systems with free boundaries-application of inverse formulation. Control Cybern. 8, 213–225 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Nochetto, R.H., Verdi, C.: The combined use of nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Optimiz. 9, 1177–1192 (1987-1988)

  32. Oleinik, O.A.: A method of solution of the general Stefan problem, Doklady Akademii Nauk SSSR (in Russian) 135: 1050-1057, MR 0125341, Zbl 0131.09202

  33. Primicero, M.: The Occurrence of Pathologies in Some Stefan-Like Problems. Numerical Treatment of Free Boundary-Value Problems, pp. 233–244. Birkhauser, Basel (1982)

    Google Scholar 

  34. Sagues, C.: Simulation and Optimal Control of Free Boundary, Numerical Treatment of Free Boundary-Value Problems, vol. 58, pp. 270–287. Birkhauser, Basel (1982)

    Google Scholar 

  35. Sherman, B.: General one-phase Stefan problems and free boundary problems for the heat equation with Cauchy data prescribed on the free boundary. SIAM J. Appl. Math. 20, 557–570 (1971)

    MathSciNet  Google Scholar 

  36. Talenti, G., Vessella, S.: A note on an ill-posed problem for the heat equation. J. Aust. Math. Soc. Ser. A 32, 358–368 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vasil’ev, F.P.: The Existence of a Solution of a Certain Optimal Stefan Problem. Computing Methods and Programming, vol. XII, pp. 110–114. Izdat Moskow University, Moscow (1969)

    Google Scholar 

  38. Vasil’ev, F.P.: Methods for Solving Extremal Problems. Minimization Problems in Function Spaces, Regularization, Approximation (in Russian), Moscow, Nauka (1981)

  39. Yurii, A.D.: On an optimal Stefan problem. Dokl. Akad. Nauk SSSR 251, 1317–1321 (1980)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur G. Abdulla.

Additional information

This research is funded by NSF Grant #1359074.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulla, U.G., Poggi, B. Optimal Control of the Multiphase Stefan Problem. Appl Math Optim 80, 479–513 (2019). https://doi.org/10.1007/s00245-017-9472-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9472-7

Keywords

Mathematics Subject Classification

Navigation