Skip to main content
Log in

Ergodic Maximum Principle for Stochastic Systems

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We present a version of the stochastic maximum principle (SMP) for ergodic control problems. In particular we give necessary (and sufficient) conditions for optimality for controlled dissipative systems in finite dimensions. The strategy we employ is mainly built on duality techniques. We are able to construct a dual process for all positive times via the analysis of a suitable class of perturbed linearized forward equations. We show that such a process is the unique bounded solution to a backward SDE on infinite horizon from which we can write a version of the SMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arisawa, M., Lions, P.-L.: On ergodic stochastic control. Commun. Partial Differ. Equ. 23(11–12), 2187–2217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A.: Équations paraboliques intervenant en contrôle optimal ergodique. Math. Appl. Comput. 6(3), 211–255 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Borkar, V.S., Ghosh, M.K.: Ergodic control of multidimensional diffusions. I. The existence results. SIAM J. Control Optim. 26(1), 112–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerrai, S.: Second order PDE’s in finite and infinite dimension. A probabilistic approach. In: Lecture Notes in Mathematics vol. 1762. Springer-Verlag, Berlin (2001)

  5. Cohen, S.N., Fedyashov, V.: Classical adjoints for ergodic stochastic control. arXiv:1511.04255 (2015)

  6. Debussche, A., Ying, H., Tessitore, G.: Ergodic BSDEs under weak dissipative assumptions. Stoch. Process. Appl. 121(3), 407–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fuhrman, M., Ying, H., Tessitore, G.: Ergodic BSDES and optimal ergodic control in Banach spaces. SIAM J. Control Optim. 48(3), 1542–1566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldys, B., Maslowski, B.: Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation. J. Math. Anal. Appl. 234(2), 592–631 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldys, B., Maslowski, B.: On stochastic ergodic control in infinite dimensions. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, vol. 63 Progr. Probab., pp. 95–107. Birkhäuser, Basel (2011)

  10. Guatteri, G., Masiero, F.: Ergodic optimal quadratic control for an affine equation with stochastic and stationary coefficients. Syst. Control Lett. 58(3), 169–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, Y., Madec, P.-Y., Richou, A.: A probabilistic approach to large time behavior of mild solutions of HJB equations in infinite dimension. SIAM J. Control Optim. 53(1), 378–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kushner, H.J.: Optimality conditions for the average cost per unit time problem with a diffusion model. SIAM J. Control Optim. 16(2), 330–346 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mandl, P.: On control by non-stopped diffusion processes. Teor. Verojatnost. i Primenen. 9, 655–669 (1964)

    MathSciNet  Google Scholar 

  14. Maslowski, B., Veverka, P.: Sufficient stochastic maximum principle for discounted control problem. Appl. Math. Optim. 70(2), 225–252 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Orrieri, C., Veverka, P.: Necessary stochastic maximum principle for dissipative systems on infinite time horizon. ESAIM Control Optim. Calc. Var. 23(1), 337–371 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Richou, A.: Ergodic BSDEs and related PDEs with Neumann boundary conditions. Stoch. Process. Appl. 119(9), 2945–2969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Orrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orrieri, C., Tessitore, G. & Veverka, P. Ergodic Maximum Principle for Stochastic Systems. Appl Math Optim 79, 567–591 (2019). https://doi.org/10.1007/s00245-017-9448-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9448-7

Keywords

Mathematics Subject Classification

Navigation