Abstract
We present a version of the stochastic maximum principle (SMP) for ergodic control problems. In particular we give necessary (and sufficient) conditions for optimality for controlled dissipative systems in finite dimensions. The strategy we employ is mainly built on duality techniques. We are able to construct a dual process for all positive times via the analysis of a suitable class of perturbed linearized forward equations. We show that such a process is the unique bounded solution to a backward SDE on infinite horizon from which we can write a version of the SMP.
Similar content being viewed by others
References
Arisawa, M., Lions, P.-L.: On ergodic stochastic control. Commun. Partial Differ. Equ. 23(11–12), 2187–2217 (1998)
Bensoussan, A.: Équations paraboliques intervenant en contrôle optimal ergodique. Math. Appl. Comput. 6(3), 211–255 (1987)
Borkar, V.S., Ghosh, M.K.: Ergodic control of multidimensional diffusions. I. The existence results. SIAM J. Control Optim. 26(1), 112–126 (1988)
Cerrai, S.: Second order PDE’s in finite and infinite dimension. A probabilistic approach. In: Lecture Notes in Mathematics vol. 1762. Springer-Verlag, Berlin (2001)
Cohen, S.N., Fedyashov, V.: Classical adjoints for ergodic stochastic control. arXiv:1511.04255 (2015)
Debussche, A., Ying, H., Tessitore, G.: Ergodic BSDEs under weak dissipative assumptions. Stoch. Process. Appl. 121(3), 407–426 (2011)
Fuhrman, M., Ying, H., Tessitore, G.: Ergodic BSDES and optimal ergodic control in Banach spaces. SIAM J. Control Optim. 48(3), 1542–1566 (2009)
Goldys, B., Maslowski, B.: Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation. J. Math. Anal. Appl. 234(2), 592–631 (1999)
Goldys, B., Maslowski, B.: On stochastic ergodic control in infinite dimensions. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, vol. 63 Progr. Probab., pp. 95–107. Birkhäuser, Basel (2011)
Guatteri, G., Masiero, F.: Ergodic optimal quadratic control for an affine equation with stochastic and stationary coefficients. Syst. Control Lett. 58(3), 169–177 (2009)
Hu, Y., Madec, P.-Y., Richou, A.: A probabilistic approach to large time behavior of mild solutions of HJB equations in infinite dimension. SIAM J. Control Optim. 53(1), 378–398 (2015)
Kushner, H.J.: Optimality conditions for the average cost per unit time problem with a diffusion model. SIAM J. Control Optim. 16(2), 330–346 (1978)
Mandl, P.: On control by non-stopped diffusion processes. Teor. Verojatnost. i Primenen. 9, 655–669 (1964)
Maslowski, B., Veverka, P.: Sufficient stochastic maximum principle for discounted control problem. Appl. Math. Optim. 70(2), 225–252 (2014)
Orrieri, C., Veverka, P.: Necessary stochastic maximum principle for dissipative systems on infinite time horizon. ESAIM Control Optim. Calc. Var. 23(1), 337–371 (2017)
Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)
Richou, A.: Ergodic BSDEs and related PDEs with Neumann boundary conditions. Stoch. Process. Appl. 119(9), 2945–2969 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Orrieri, C., Tessitore, G. & Veverka, P. Ergodic Maximum Principle for Stochastic Systems. Appl Math Optim 79, 567–591 (2019). https://doi.org/10.1007/s00245-017-9448-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00245-017-9448-7
Keywords
- Stochastic maximum principle
- Stochastic ergodic control problems
- Dissipative systems
- Backward stochastic differential equation